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ABSTRACT

We present the SnapNet , a system that provides accurate
real-time map matching for cellular-based trajectories. Such
coarse-grained trajectories introduce new challenges to map
matching including (1) input locations that are far from the
actual road segment (errors in the orders of kilometers),
(2) back-and-forth transitions, and (3) highly sparse input
data. SnapNet addresses these challenges by applying exten-
sive preprocessing steps to remove the noisy locations and
to handle the data sparseness. At the core of SnapNet is
a novel incremental HMM algorithm that combines digital
map hints and a number of heuristics to reduce the noise
and provide real-time estimation. Evaluation of SnapNet
in different cities covering more than 100km distance shows
that it can achieve more than 90% accuracy under noisy
coarse-grained input location estimates. This maps to over
97% and 34% enhancement in precision and recall respec-
tively when compared to traditional HMM map matching
algorithms. Moreover, SnapNet has a low latency of 1.2ms
per location estimate.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION
Map matching, the problem of mapping a set of coor-

dinates with errors to the corresponding points on the road
network, has been widely used in location based applications
including car navigation, directions finding, car heading es-
timation, traffic analysis, among others. A large number
of map matching techniques [9, 10] have been proposed in
literature, all based on GPS as the ubiquitous localization
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Figure 1: Example of the different challenges of cellular-based
locations map matching: Reported location is typically far from
the correct road segment, location update rate is low, and there
are back-and-forth jumps (The user is moving straight but her
location estimates sequence is C1-C2-C3-C2-C4 due to the over-
lapping coverage between the cell towers in Area A.

technology for outdoors. However, since GPS is an energy
hungry device and may not be available everywhere, a num-
ber of map matching techniques have been proposed that can
handle a lower sampling rate and lower localization accuracy.
These techniques usually depend on using other phone sen-
sors such as WiFi [11] or inertial sensors [13]; or do extensive
war driving effort assuming the availability of neighbouring
cell tower information [12]1.

In this paper, we argue that there is a growing number
of map matching applications that cannot assume the exis-
tence of GPS or other phone sensors. In particular, traffic
estimation from the cellular provider-side, low-energy GPS-
less localization [2,3,6–8], applications that involve low-end
phones with no GPS or other sensors (e.g. in developing
countries), and crowd-sensing applications in which GPS is
usually turned off are examples of such applications [1]. In
such scenarios, the typical assumptions of traditional map
matching algorithms do not hold. Specifically, as shown in
Figure 1, the phone location is no longer near the actual
road segment, the location error is in the order of kilome-
ters, there are back-and-forth transitions due to changing
the cell tower association, and the input location samples
are highly sparse. These harsh constraints lead to a much
harder map matching problem, in terms of quality of input
points and number of candidate road segments, affecting
both the accuracy and computational complexity.

We therefore present SnapNet , a system for accurate and
efficient map matching of challenging environments. At the
core of SnapNet is a novel incremental Hidden Markov Model
(HMM)-based algorithm that takes into account the noise
of the input data as well as digital map hints to enhance

1The majority of cell phones in the market only give access
to the associated cell tower information with no access to
the neighboring cell tower information.
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Figure 2: SnapNet system architecture.

the accuracy of the estimated road segments and efficiently
handles the increased number of candidate road segments.
This HMM is also combined with a number of preprocessing
modules that reduce the noise and spareness in the input
data.

We evaluated SnapNet on driving traces collected in mul-
tiple cities. Our results show that SnapNet can achieve 90%
accuracy in identifying the correct road segment. This comes
with a low latency in computation of 1.2ms per location.

2. THE SnapNet SYSTEM
Figure 2 shows an overview of the SnapNet architecture.

The input to SnapNet is a time-stamped coarse-grained lo-
cation. Each location is represented by its latitude and lon-
gitude as well as an estimate of the localization error.

SnapNet map-matches the user trajectory incrementally
in real-time. It starts by two preprocessing steps: filtering
and interpolation. A series of consecutive filters are applied
to the raw data to eliminate the noise. However, this makes
the traces much more sparse. Therefore, we apply interpo-
lation on the filtered data to reduce this sparseness.

The filtered and interpolated points are then passed to the
map matcher that employs a novel HMM algorithm to han-
dle the noisy location data efficiently. Specifically, our map
matching algorithm contains two sub-modules: Candidate
Extraction and Filtering, and Incremental Map Matching.
The Candidate Extraction and Filtering module determines
the candidate road segments from OpenStreetMaps. The
Incremental Map Matching algorithm integrates a number
of modifications to the standard HMM algorithm to take
the quality of the input data into account as well as digital
map hints to enhance the accuracy of the estimated road
segments. Finally, the Online Viterbi Algorithm efficiently
calculates the probabilities of the different road segments
and determines the most probable road segment. The Map
Matcher outputs the matched road segment along with the
estimated location on it.

2.1 Filtering Modules
We apply three consecutive filters to detect noisy transi-

tions: the Speed filter, the α-trimmed filter, and the Direc-
tion filter.
The Speed Filter assumes that the user does not exceed

a certain speed threshold as her speed is limited by many
factors such as the vehicle maximum speed.Therefore, if the
user’s estimated current speed exceeds this threshold, her
current location estimate is detected as an outlier.
The speed between any two points can be calculated by

dividing the geodesic distance between the two points by the
difference in their time-stamps. However, due to the high
error in the input locations, this speed is noisy to use. In-
stead, we estimate the user’s current speed by averaging the
speed between this location and a window of the preceding
unfiltered locations.
The α-trimmed Mean Filter [4] aims to reduce the

back-and-forth transitions in the input data. An α-trimmed
filter has the advantage of handling both impulse and Gaus-
sian noise, as compared to mean and median filters that can
handle only one of them.
The basic idea is to look at the neighbors of each point,

remove 2α of the extreme neighbors, i.e. outliers, then re-
place the point by calculating the mean of the unfiltered
neighbors.
The Direction Filter further reduces the back-and-forth

transitions which lead to a change in the user direction, i.e.
as if the user made a u-turn. It ensures that the change in
the user’s direction is only allowed when we are sure that it
is originating from an actual change in direction, not due to
noise in the location data. To do that, if a location point
indicates a direction change, we cache the point temporarily
till we get a new location point. If the new location con-
firms the direction change, we add the two points to the
pre-processed trace. Otherwise, we drop the cached point.

2.2 Interpolation
After applying the filters on the raw input location points,

the sparseness of the data points increases. To overcome
this, we apply linear interpolation on the unfiltered loca-
tion points when needed. We add interpolated points at
equally-spaced distances between the actual location points
when the distance between them exceeds a threshold. We
found that, in most cases, the interpolated points will match
with the shortest path between the true points on the road
network when using a step of 50m without performing ex-
pensive shortest path computations.

3. THE SnapNet MAP MATCHER
The input to the Map Matcher module are the filtered

and interpolated location data as well as the digital map.
We model the map matching problem as a Hidden-Markov
Model (HMM). Our extended incremental HMM can effec-
tively fuse the noisy input location data and the provided
road network constraints in a sound way to provide accu-
rate map matching. The Map Matcher module has two sub-
modules: the Candidate Extraction and Filtering module
and the Incremental Map Matching module.

3.1 Candidate Extraction and Filtering
For each input location (latt, lont, errt) at time t, we ex-

tract all candidate road segments that intersect with the
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circle centered at (latt, lont) with radius errt using the dig-
ital map. To speed up the candidate extraction, we build
an R-tree spatial index on all possible road segments in the
road network. We further filter any candidate segment that
is not connected to at least one of the candidate segments
from the previous estimation step. The unfiltered road seg-
ments represent the candidates for the current observation.
An observation point with an empty candidates set is con-
sidered an outlier.

3.2 Incremental Map Matching
SnapNet employs an extended HMM to address the noisy

input data. In particular, we provide (a) dynamic parameter
estimation based on the noise in the input data, and (b)
apply a heuristic for road transitions to handle the false
transitions.

Traditional HMM-based map matching approaches use a
window of input locations to estimate the corresponding
map matched locations. This technique leads to a good ac-
curacy, however, it increases the latency of the estimated
location as the system has to wait for a full window of sam-
ples before it can produce the output. This is even worse
with the coarse-grained and sparse cellular location infor-
mation as the number of candidate road segments is high,
leading to more calculations per iteration. To address this
latency issue, SnapNet uses an incremental map matching
approach, where a sliding window is used for estimation: at
each time instant, a new location sample is added and the
oldest sample is removed from the window.

We start this section by providing the mathematical model
and notations followed by the details of how SnapNet esti-
mates the different model parameters.

3.2.1 Mathematical Model and Notations

The input to the Map Matching module is a set of T cellu-
lar locations Z = (z1, ..., zT ), where zt = (latt, lont, errt), 1 <
t < T , represents the location information at time t. Let
St = {s1,t, s2,t, ..., sNt,t} be the set of possible states, i.e.
road segments, at time t obtained by the Candidate Extrac-
tion and Filtering module, where Nt = |St|.

For each road segment i, the Map Matching module uses
two probability distributions:

1. The state transition probability distribution between
road segments i and j, A = {aij}, where aij = P [sj,t|si,t−1]

2. The observation probability distribution in state i, B =
P [zt|si,t], i.e the probability of observing an input lo-
cation given the user is actually on road segment i.

In addition, the module calculates the initial state distribu-
tion π = {πi}, where πi = P [si,1]. Therefore, the problem
becomes, given a sequence of location observations (Z), we
want to find the most probable sequence of road segments
(states) Q = (q1, ..., qT ), where each qt ∈ St, 1 < t < T .

3.2.2 Observation Probability

The observation probability p(zt|si,t) is the probability
that state (i.e. road segment) si,t emits the observation (i.e.
input location) zt. To estimate the observation probability,
we take it as a function of the distance between the observed
location and the projected location on the corresponding
road segment. The intuition is that the closer the observed
location to the road segment, it is more probable that this
road is the user’s actual segment. It has been shown that
this distance can be modeled accurately using a Gaussian

distribution for GPS trajectories [5]. Therefore, we extend
the Gaussian model in literature to fit our problem. Specifi-
cally, the observation probability in SnapNet is modeled as:

p(zt|si,t) = 1√
2πσt

e
−0.5

(
dist(zt,si,t)

σt

)2

(1)

where dist(zt, si,t) is the geodesic distance between zt and
si,t, and σt is the standard deviation of a Gaussian ran-
dom variable that corresponds to the error in the sensor
measurements. SnapNet has two novel contributions to this
observation probability model compared to literature: First,
instead of using a fixed value for σt, and since the error in
the input location in our case varies with time, e.g. based
on the range of the associated cell-tower, we estimate the
value of sigma dynamically based on the average error of
the input locations over a time window (w = 10). Second,
to further handle the back-and-forth effect and errors in the
digital map, we also consider the relation between the direc-
tion of the candidate road segment and the input trajectory:
roads in the opposite direction of the input trajectory are
assigned a small observation probability.

3.2.3 Transition Probability

The transition probability is the probability of moving to
the next road segment (state sj,t) given that the current
state is road segment si,t−1. The transition probability can
be estimated as a function based on the difference between
the distance on the input trajectory and the distance be-
tween the projections on the road segments. The smaller
this distance is, the larger the transition probability should
be. We assume that this distance difference (dt) has an expo-
nential distribution [10]. However, due to the noisy location
input and using an online incremental algorithm, it gives
a large number of false transitions. To reduce this abrupt
transitions, we bias the transition probability to favor stay-
ing on the current road. This is achieved by weighting the
exponential transition probability according to whether the
transition is on the same road segment or not. Therefore,
the transition probability used in SnapNet is:

p(sj,t|si,t−1) =







psame.
1
β
e
− dt

β when sj,t = si,t−1

(1− psame).
1
β
e
− dt

β otherwise

(2)
Where psame ≥ 0.5 is the probability (weight) of staying on
the same road between transitions.

4. EVALUATION
We tested SnapNet on real data traces collected from two

cities in Egypt. Our data consists of 100 km of car driving,
collected using different Android phones including Samsung
Galaxy S3, S4, and S5 phones as well as an LG Nexus 4.

To get low-accuracy network-based location estimates, we
use the Google Android Location API with WiFi turned
off. This way, the returned location is based on the associ-
ated cell tower information only as the used phones do not
report the neighboring cell towers. This provides a coarse-
grained location accuracy. For ground truth, we also col-
lected accurate location data at high sampling rate using
a GPS/GLONASS receiver. We further apply map match-
ing to this high accuracy data to obtain the actual driving
path. It has been shown in literature that map matched
GPS traces with a one second sampling rate almost yields
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Figure 3: Accuracy comparison between SnapNet and the base-
line HMM map matching technique.
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Figure 4: Running time of the SnapNet components.

the ground truth path [10].
To evaluate SnapNet , first we find the common match-

ing sequence of roads X between the map matched output
trajectory Y and the ground-truth trajectory G. Then, we
compute two evaluation metrics: precision and recall [10].
Precision is defined as the ratio between the distance tra-
versed on the matching sequence X and the total distance
of the map matched trajectory Y . Recall is defined as the ra-
tio between the distance traversed on the matching sequence
X and the total distance of the ground truth trajectory G.
In the following subsection, we show the effect of the over-
all system performance of SnapNet and compare it with a
baseline HMM map matching technique.

4.1 System Performance
We compare the SnapNet accuracy with a baseline tech-

nique that uses a plain HMM map matching without any of
the additional filters or our HMM modifications. Figure 3
shows that SnapNet achieves over 97.4% enhancement in
precision and over 34.6% enhancement in recall, highlight-
ing the combined advantage of the different modules of the
system. Figure 4 shows the average latency per input loca-
tion for each module (log scale). The figure shows that the
overall latency of SnapNet is about 1.2 ms. Most of the run-
ning time is consumed by the HMM parameters estimation
and the online Viterbi algorithm. This is due to the large
error of the input network-based locations, which results in
a large number of candidates. Compared to the window-
based baseline technique, the online Viterbi algorithm and
the incremental HMM module reduce the latency by more
than three orders of magnitude.

5. CONCLUSION
We presented SnapNet , a real-time map matcher for noisy

cellular-based trajectory traces. SnapNet is unique in tar-
geting mainstream cell phones which can only provide its
associated cell-info for localization systems; opening up new

possibilities for location-based services. We provided the
SnapNet ’s system architecture and the different modules
that help it reduce the noise and sparseness in the input
data, and leverage the digital map information to enhance
the estimation accuracy while maintaining real-time opera-
tion. An evaluation of SnapNet using real-traces, shows that
SnapNet can achieve a map matching precision and recall of
more than 90% with an average running time of 1.2ms.
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