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Accurate Real-time Map Matching for
Challenging Environments

Reham Mohamed, Heba Aly, Student Member, IEEE, and Moustafa Youssef, Senior Member, IEEE

Abstract—We present the SnapNet system, which provides accu-
rate real-time map matching for cellular-based trajectory traces.
Such traces are characterized by input locations that are far
from the actual road segment, errors on the order of kilometers,
back-and-forth transitions, and highly sparse input data. SnapNet
applies a series of filters to handle the noisy locations and an
interpolation stage to address the data sparseness. At the core of
SnapNet is a novel incremental HMM algorithm that combines
digital map hints in the estimation process and a number of
heuristics to reduce the noise and provide real-time estimations.
Evaluation of SnapNet using actual traces from different cities
covering more than 400 km shows that it can achieve a precision
and recall of more than 90% under noisy coarse-grained input
location estimates. This maps to over 97% and 34% enhancement
in precision and recall, respectively, when compared to the tradi-
tional HMM map-matching algorithms. Moreover, SnapNet has a
latency of 0.58 ms per location estimate.

Index Terms—Map matching, Hidden Markov Model, cellular-
based trajectories , crowdsourcing.

I. INTRODUCTION

MAP matching, the problem of mapping a set of coor-
dinates with errors to the corresponding points on the

road network, has been used widely in location-based applica-
tions including car navigation, directions finding, car heading
estimation, automatic scheduling of the public transportation
systems, traffic analysis, among others. A large number of
map matching techniques [2], [14], [20], [23], [27], [29], [34],
[42] have been proposed in literature, all based on GPS as
the ubiquitous localization technology for outdoors. However,
since GPS is an energy hungry device and may not be available
everywhere; e.g. due to tall buildings surrounding the road, in-
side tunnels, and/or in bad weather conditions [15]; a number of
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map matching techniques have been proposed that can handle
a lower sampling rate and lower localization accuracy. These
techniques usually depend on using other phone sensors such as
WiFi [38] or inertial sensors [6], [21], [39], [40]; or do extensive
war driving effort assuming the availability of neighbouring cell
tower information [39]1.

In this paper, we argue that there is a growing number of map
matching applications that cannot assume the existence of GPS
or other phone sensors. In particular, traffic estimation from the
cellular provider-side (where only the associated cell tower and
signal strength information is available for each cell phone),
low-energy GPS-less localization [7], [8], [31], applications that
involve low-end phones which do not have GPS or other sensors
(e.g. in developing countries), and crowd-sensing applications
in which users are not actively involved [17], [18] are examples
of such applications. In such scenarios, the typical assumptions
of traditional map matching algorithms do not hold, where
previous map matching systems assume the presence of inertial
sensors, low-sampled GPS or WiFi which are not available in
our case. Specifically, as shown in Fig. 1, the phone location
is no longer near the actual road segment, the location error is
in the order of kilometers, there are back-and-forth transitions
(where the input location jumps around due to changing the
cell tower association), as well as the input location samples
are highly sparse. These strict/harsh constraints lead to a much
harder map matching problem in terms of quality of input points
and number of candidate road segments, affecting both the
accuracy and computational complexity.

We therefore present SnapNet, a system for accurate and ef-
ficient map matching for challenging environments. SnapNet is
based on a number of heuristics rooted on a set of observations
from real-life usage scenarios. Specifically, we note that the
traffic distribution on different roads is non-uniform and that
users are more likely to take major roads than non-major ones.
In addition, users prefer to take the shortest path between any
two points and they would not make several turns in a short
time. Finally, the majority of users always follow the traffic
rules; therefore their paths follow the topological relations of
the road network. Based on this, we present a novel incremental
Hidden Markov Model (HMM)-based map matching algorithm
that takes the noise of the input data into account as well as
digital map hints to enhance the accuracy of the estimated
road segments and efficiently handles the increased number

1The majority of cell phones in the market only give access to the associated
cell tower information, with no access to the neighbouring cell tower infor-
mation. This reduces the accuracy of the cellular-based localization techniques
significantly [24].
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Fig. 1. Challenges of using cellular-based locations in map matching.
(a) Cellular-based traces. Reported location is far from the correct road, location
update rate is only at handover, and there are back-and-forth jumps (The user is
moving straight from left to right on the orange road but her location estimates
sequence is C1–C2–C3–C2–C4 due to the cell towers’ overlapping coverage
in Area A). (b) Localization error for the different localization techniques
(log scale for the x-axis).

of candidate road segments. This HMM is combined with a
number of preprocessing modules that reduce the noise and
sparseness in the input data.

We have implemented SnapNet and evaluated it on driving
traces collected in multiple cities. Our results show that
SnapNet can achieve 90% accuracy in identifying the correct
road segment. This comes with a low latency in computation of
0.58 ms per location estimate.

In summary, our contributions are:

• We present the architecture of SnapNet: a real-time map-
matcher for challenging environments.

• We present effective preprocessing modules for challeng-
ing cellular-based trajectories. The modules handles high
noise, back-and-forth transition and sparseness in the
input locations.

• We present the details of our novel incremental HMM
algorithm that combines digital map hints and a number
of heuristics to provide accurate map-matching estimates
in real-time.

• We implement the SnapNet system and evaluate its perfor-
mance using real traces with different accuracies as com-
pared to the defacto standard HMM-based map-matching
algorithms at different environments.

The rest of the paper is organized as follows: we discuss
related work in Section II. We then present the SnapNet sys-
tem architecture and the different pre-processing modules in
Section III. Section IV gives the details of the novel map match-
ing algorithm and how it handles the noise of the input data
while maintaining the efficiency of computation. In Section V,

we present our experimental evaluation. Finally, Section VI
concludes the paper.

II. RELATED WORK

The map matching problem has attracted lots of attention
from researchers due to its importance for several location-
based services, e.g. [1], [3]–[5], [26]. A large number of tech-
niques have been proposed over the years for map matching
GPS location data [2], [14], [20], [23], [27], [29], [34], [42].
These techniques can be classified as geometric or topological
techniques.

Geometric techniques utilize the geometry of the input trace
and the road network. They consider only the shape of the
links regardless of their connectivity. Examples of geometric
techniques include point-to-point matching [11], point-to-curve
matching [11], [41] and curve-to-curve matching [11], [33],
[41]. While these techniques could provide good map-matching
accuracy for GPS trajectories, they are unsuitable for cellular-
based trajectories. Since cellular-based trajectories are a series
of noisy cell-tower locations, their shape is unsuitable for
matching using geometric techniques.

On the other hand, topological techniques, e.g. [12], [20],
[23], [27], [34], leverage the relation, e.g. connectivity, between
map elements for map matching. Among those, HMMs provide
a probabilistic framework to address the noise in the input
data with remarkable accuracy when the sampling rate is high.
A subset of these techniques, e.g. [23], [27], investigated the
use of HMM for map matching with a low density of GPS
samples. However, even with a low-density GPS samples, the
accuracy of the reported location is high (input location is
close to the correct road segment) and there are no back-and-
forth transitions, leading to a much easier problem compared to
using the coarse-grained cellular-based location. Hence, their
accuracy degrades significantly when map-matching cellular-
trajectories (see Section V).

Recently, a few systems were proposed to solve the map
matching problem for network-based location data [6], [21],
[38]–[40]. VTrack [38] builds an HMM-based map matching
scheme leveraging WiFi information to handle the inaccuracy
of cellular location information. CTrack [39] alternatively uses
war-driving training data in addition to inertial sensors to
reduce the inaccuracy of cellular-based locations. AutoWitness
[21] and WheelLoc [40] leverage inertial sensors and dead-
reckoning to reduce the inaccuracy of cellular-based localiza-
tion. SemMatch [6] leverages inertial sensors to identify road
semantics and use them as hints to improve the map-matching
accuracy.

Unlike these systems, SnapNet is unique in map-matching
the more challenging raw coarse-grained cellular-based lo-
cations without using any training and/or additional sensors.
Hence, it is more ubiquitous in terms of covered cellphones and
applications domains. Table I highlights the main differences
between SnapNet and the closest map matching techniques.
A poster has been presented about this work [30] covering
the basic idea. This paper presents the full system design,
architecture, details of the different components, as well as
extensive evaluation of the proposed system.
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TABLE I
COMPARISON BETWEEN SnapNet AND RELATED SYSTEMS

III. THE SnapNet SYSTEM

In this section, we provide an overview of the SnapNet
system. We start by the system assumptions followed by the
details of the different pre-processing modules for handling the
noise and sparsity of the input data.

A. System Assumptions

SnapNet is based on the following assumptions that allow
it to achieve its goals: First, we assume that users are more
probably to take major roads rather than secondary roads. This
is confirmed by transportation statistics collected in Britain,
where traffic statistics covering 317.1 billion miles, show that
65.7% of the vehicle traffic is on major roads, while 34.3%
is on non-major roads.2 This number is consistent in different
countries, such as Scotland.3 This property is also used by route
planning techniques [36] and navigation systems, which exploit
the hierarchical structure of the road network and classify
roads according to their importance/weight. Second, we further
assume that users are more likely to stay on the same road
than make frequent turns/road changes. Third, we assume that
the distance between the observed point and the candidate
roads follows a Gaussian distribution and that the difference
in distances between the observed points and their projections
on the road segments follows an exponential distribution. These
assumptions have been validated in literature [32]. Finally, we
assume that the users are more likely to take the shortest path
between any two points.

B. Overview

Fig. 2 shows an overview of the SnapNet architecture. The
input to SnapNet is time-stamped location data. Each location
is represented as a (latitude, longitude, error) triplet that cap-
tures the user estimated location as well as an estimate of the
localization error. SnapNet targets scenarios with challenging
localization environments, as shown in Fig. 1. For example, in
a cell-ID based localization system, the location of the device
is often estimated as the location of the associated cell tower.
This leads to a localization error in the order of kilometers [see
Fig. 1(b)] and locations that are far from the actual road segment
the user is on. In addition, since the user location will only
change when the associated cell tower changes, this leads to a

2https://www.gov.uk/government/uploads/system/uploads/attachment_data/
file/499046/prov-road-traffic-estimates-jan-to-dec-2015.pdf

3http://www.transport.gov.scot/statistics/j285663-08.htm

Fig. 2. SnapNet system architecture.

highly sparse location information. Moreover, cellular networks
suffer from a phenomenon called the “Ping-Pong” effect [16],
[28], where a user within the coverage area of two or more cell
towers continuously changes her association due to the dynamic
load on the cell towers, leading to fluctuation in the reported
user location even with no device movement.

SnapNet map-matches the user trajectory incrementally in
real-time as the user sends her cellular-based location with
its error estimate point by point. It starts by preprocessing
these location points in two steps: filtering and interpolation.
A series of consecutive filters are applied to the raw data
to eliminate the noise. However, this makes the traces much
sparser. Therefore, we apply interpolation on the filtered data to
reduce this sparseness.

The filtered and interpolated points are then passed to the
map matching module that employs a novel HMM algorithm to
handle the noisy location data in an efficient manner. Specifi-
cally, our map matching algorithm contains three sub-modules:
Candidate Extraction and Filtering, Incremental Map Matching,
and an Online Viterbi Algorithm. The Candidate Extraction
and Filtering module determines the candidate road segments
from the OpenStreetMaps4 digital maps taking into account
the error in the input location and the previous estimated user
location. The Incremental Map Matching algorithm integrates

4http://www.openstreetmap.org/
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Fig. 3. Operation stages of SnapNet. (Black trace) Ground truth. (Red with squares) Raw input trace. The label GT-road shows the actual ground truth road
crossing the lake.(a) Raw trace. (b) SnapNet preprocessed trace. (c) SnapNet map-matched trace.

a number of modifications to the standard HMM algorithm
to take the quality of the input data into account as well as
digital map hints to enhance the accuracy of the estimated
road segments. Finally, the Online Viterbi Algorithm efficiently
calculates the probabilities of the different road segments and
determines the most probable road segment. The Map Matcher
outputs the matched road segment along with the estimated
location on it. Fig. 3 shows an example of SnapNet algorithm
stages in action.

In the balance of this section, we provide the details of the
different pre-processing modules. We leave the details of the
Map Matching modules to the next section.

C. Filtering Modules

Through a series of consecutive filters we aim to detect
transitions that are unlikely to be on the actual path and filter
them out. In particular, we apply three filters in succession:
the Speed filter, the α-trimmed filter, and the Direction filter.
We give the details of the different filters in the following
subsections.

1) Speed Filter: The user’s speed is limited by many factors
including the vehicle maximum speed and the road speed limit.
Hence, we assume that the user does not exceed a certain speed
threshold (νmax) obtained from the digital map and physical
speed limits. If the user’s estimated current speed exceeds this
threshold, her current location estimate is detected as an outlier.

The speed between any two points can be calculated by
dividing the geodesic distance between the two points by the
difference in their time-stamps. However, due to the high error
in the input locations, this speed is noisy to use (see Fig. 4).
Instead, we estimate the user’s current speed (νp) by averaging
the speed between this location and a window of the preceding
unfiltered locations as in Equation (1).

νp =
1
ws

p−1∑
i=p−ws

di,p
(ti − tp)

(1)

where p is the index of the current input location, ws is the
window size, di,p is the geodesic distance between locations
i and p, and ti, tp are the time-stamps of locations i and p
respectively.

If νp exceeds the speed limit (νmax), we filter out its corre-
sponding location point.

Fig. 4. Advantage of using a window for the speed filter. Estimating speed
based on the previous point only will lead to filtering Point 4 due to the noisy
Point 3. Using the average speed between Point 4 and a window of points, this
effect is reduced. (a) v = v1 > vmax. (b) v = ((v1 + v2 + v3)/3) < vmax.

Fig. 5. Operation of the α-trimmed filter wa = 5. Point numbers represent the
time index. (a) Two-dimensional points are reordered and mapped into a 1-D
vector using the linear space-filling curve. (b) α% of the points are removed
from the head and tail of the vector, and the mean of the remaining points is
calculated.

2) α-Trimmed Mean Filter: To reduce the back-and-forth
transitions, we apply an α-trimmed mean filter [10] on the loca-
tion points. An α-trimmed filter has the advantage of handling
both impulse and Gaussian noise, as compared to mean and
median filters that can handle only one of them. In addition,
it is simple to implement.

The basic idea (see Fig. 5) is to look at the neighbors of each
point, remove 2α of the extreme neighbors, i.e. outliers, then re-
place the point by calculating the mean of the unfiltered neigh-
bors. Therefore, at α = 0, the filter works as a standard average
filter while at α = 0.5, the filter works as a median filter.
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Fig. 6. Effect of the α-trimmed filter for the different values of α. (Black trace)
Ground truth. (Red with squares) Preprocessed trace. (Blue with circles) Final
map-matched trace. (a) α = 0 (Average filter). (b) α = 0.2.

In particular, we apply the α-trimmed filter on the input
locations with a sliding window of size wa: First we order
the location points such that loc1 ≤ loc2 ≤ · · · ≤ locwa

. Then
we remove α of the points from the head and tail. Finally, we
return the mean of the remaining points. The output of the filter
will be:

S(α,wa) =
1

wa − 2�αwa�

wa−�αwa�∑
i=�αwa�+1

loci (2)

where �.� denotes the greatest integer part and 0 < α < 0.5.
Note that to apply the filter, we need to sort the locations

(loci). We experimented with different space-filling curves and
found that applying the linear space filling curve [9] provides
good accuracy while maintaining low computational time. This
is intuitive as most of the time the user moves in straight lines.

Fig. 6 shows an example of applying the α-trimmed filter
with α = 0.2 to a trace with a noisy part. The figure shows that
the filtered trace can capture the actual shape of the trajectory
better than a standard average filter.

3) Direction Filter: To further reduce the back-and-forth
transitions, we apply the direction filter. Note that back-and-
forth transitions lead to a change in the user direction, i.e., as if
the user made a u-turn. Therefore, the direction filter ensures
that the change in the user’s direction is only allowed when
we are sure that it is originating from an actual change in
direction, not due to noise in the location data. To do that, if a
location point indicates a direction change, we cache the point
temporarily till we get a new location point. If the new location
confirms the direction change, we add the two points to the
pre-processed trace. Otherwise, we drop the cached point. We
found that using only one new location to confirm the direction
change was enough as most of the noisy points were filtered in
the preceding filtering stages.

D. Interpolation

After applying the filters on the raw input location points,
the sparseness of the data points increases. To overcome this,
we apply linear interpolation [25] on the unfiltered location
points when needed. Specifically, for each unfiltered point (p),
we calculate the distance between it and its preceding point
(p− 1), if the distance between them is above a threshold, we

add linearly interpolated points between them at equally-spaced
distance as in Equation (3).

locinteri = locp−1 +
step × i× (locp−1 − locp)

dp−1,p
(3)

where locinteri is the ith interpolated point, dp−1,p is the geo-
desic distance between locations p− 1 and p, and step is the
equal distance between the interpolated points (50 m in our
experiments).

Taking the interpolated points on the straight line between
the two cellular locations achieves accurate map-matching of
low-sampled coarse-grained locations without performing ex-
pensive shortest path computations.

IV. THE SnapNet MAP MATCHER

The input to the Map Matcher module is the filtered and
interpolated location data as well as the digital map. We model
the map matching problem as a Hidden-Markov Model (HMM)
[35]. Our extended incremental HMM can effectively fuse
the noisy input location data and the provided road network
constraints in a sound way to provide accurate map match-
ing. The Map Matcher module has three sub-modules: the
Candidate Extraction and Filtering module, the Incremental
Map Matching module, and an Online Viterbi Algorithm. This
section provides the details of each of these sub modules and
the extensions we propose to the standard HMM algorithm to
provide accurate and real-time map matching.

A. Candidate Extraction and Filtering Module

For each input location (latt, lont, errt) at time t to the
Map Matcher module, we extract all candidate road segments
that intersect with the circle centered at (latt, lont) with radius
errt using the digital map. We use errt as, most probably, the
actual location will lie inside the error circle. To speed up the
candidate extraction, we build an R-tree spatial index [22] on
all possible road segments in the road network.

We further filter these candidate road segments by removing
any segment that is not connected to at least one of the candidate
road segments from the previous estimation step. The unfiltered
road segments represent the candidates for the current obser-
vation. An observation point with an empty candidates set is
considered as an outlier.

B. Incremental Map Matching

SnapNet employs an extended HMM to address the noisy
input data. In particular, we provide (a) dynamic parameter
estimation based on the noise in the input data, (b) a novel road
weighting technique to leverage hints from the road network to
enhance accuracy, and (c) apply a heuristic for road transitions
to handle the false transitions.

Traditional HMM-based map matching approaches use a
window of input locations to estimate the corresponding map
matched locations. This technique leads to a good accuracy,
however, it increases the latency of the estimated location as
the system has to wait for a full window of samples before it
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can produce the output. This is even worse with the coarse-
grained and sparse cellular location information as the number
of candidate road segments is high, leading to more calculations
per iteration. To address this latency issue, SnapNet uses an
incremental map matching approach, where a sliding window is
used for estimation: at each time instant, a new location sample
is added and the oldest sample is removed from the window.

A modified version of the online Viterbi algorithm [13], [37]
is then applied to compute the maximum likelihood sequence
(MLS) of hidden states for the current window using dynamic
programming by extending the current solution with the esti-
mated HMM parameters to get the best path.

The incremental HMM algorithm works as follows: When
a new location enters the system, the HMM parameters are
calculated for this point and a new row is added to the online
Viterbi matrix while removing the oldest row (sliding window).
The MLS estimation is applied on this matrix to get the best
road segment for the newly added point. The system is updated
with the new segment in real time. The Viterbi matrix starts
empty and increases incrementally when a new point is added
until it reaches a maximum size (e.g. 100 rows). After that it
works using a sliding window approach with the new point
replacing the oldest point. Note that unlike [13], [37], our
algorithm does not wait for coalescence points to produce the
output. This guarantees that the output of any new input point is
always in real time, without any latency except for computing
the HMM parameters of this point. However, the disadvantage
of this scheme is that the maximum likelihood sequence is
computed for each point separately regardless of the output
sequence of the previous points. This might result in apparently
broken topological rules [e.g., see Fig. 8(a)]. The transition
weights, which prefer staying on the same road, reduces this
effect as discussed in Section IV-B3.

We start this section by providing the mathematical model
and notations followed by the details of how SnapNet estimates
the different model parameters.

1) Mathematical Model and Notations: The input to the
Map Matching module is a set of T cellular locations Z =
(z1, . . . , zT ), where each zt, 1 < t < T is a triplet in the form
(latitude, longitude, error) representing the location information
for the tth location sample. Let St = {s1,t, s2,t, . . . , sNt,t} be
the set of possible states, i.e. road segments, at time 1 < t < T
obtained by the Candidate Extraction and Filtering module,
where Nt = |St|.

For each road segment i, The Map Matching module uses
two probability distributions:

1) The state transition probability distribution between road
segments i and j, A = {aij}, where aij = P [sj,t|si,t−1]

2) The observation probability distribution in state i, B =
P [zt|si,t], i.e. the probability of observing a certain input
location given the user is actually on road segment i.

In addition, the module calculates the initial state distribution
π = {πi}, where πi = P [si,1].

Therefore, the problem becomes, given a sequence of loca-
tion observations Z = (z1, . . . , zT ), we want to find the most
probable sequence of road segments (states) Q = (q1, . . . , qT ),
where each qt ∈ St, 1 < t < T .

Fig. 7. Using weighted distance based on the road type. Cross is the initial
input location. Circles are the apparent locations for each road after applying
the road weights.

In the next subsections, we show how the HMM distributions
are calculated in SnapNet and how the optimal state sequence
is obtained.

2) Observation Probability: The observation probability
p(zt|si,t) is the probability that state (i.e. road segment) si,t
emits the observation (i.e. input location) zt. To estimate the
observation probability, we take it as a function of the distance
between the observed location and the projected location on
the corresponding road segment. The intuition is that the closer
the observed location to the road segment, it is more probable
that this road is the user’s actual segment. It has been shown
that this distance can be modeled accurately using a Gaussian
distribution for GPS trajectories [19], [32]. We extend the
Gaussian model in literature to fit our problem. Specifically, the
observation probability in SnapNet is modeled as:

p(zt|si,t) =
1√

2πσt

e
−0.5

(
dist(zt,si,t)

σt

)2

(4)

where dist(zt, si,t) is the geodesic distance between zt and si,t,
and σt of the standard deviation of a Gaussian random vari-
able that corresponds to the error in the sensor measurements.
SnapNet has three novel contributions to this observation
probability model compared to literature: First, different from
literature that use a fixed value for σt, and since the error in
the input location in our case varies with time, e.g. based on
the range of the cell-tower the user is associated with, we set the
value of sigma dynamically based on the input location error.
Specifically, we estimate the value of σt as the average location
error over a time window. We found that the accuracy of the
system is not sensitive for window sizes larger than 10, so we
use it in our evaluation.

Second, to further handle the “ping-pong” effect and errors
in the digital map, we also consider the relation between the
direction of the candidate road segment and the direction of the
input trajectory in calculating the observation probability: roads
in the opposite direction of the input trajectory are assigned a
small probability.

Third, due to the large error in the input locations (order of
kilometers), even with these extensions, the model gave poor
map matching accuracy (see Section V). To further enhance
accuracy, we exploit the hints from the digital map. The idea
is that major roads are more likely to be traversed than side
roads. Therefore, we leverage this observation to give different
weights to different roads based on their type. Fig. 7 shows
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the basic idea: Instead of using the real distance between
the observation and the road, we multiply this distance by a
weight < 1 that is proportional to the road type. This weighted
distance is then fed into the Gaussian distribution to estimate
the observation probability. Note that more important roads
are given smaller weights, reflecting smaller distances, which
in turn implies favoring them. The road importance can be
obtained from the digital map; for example, OpenStreetMaps
have eight pre-defined road types. Alternatively, the number of
lanes per road can be used to estimate the road importance.

To map the road type to a weight (wr), we experimented with
different functions and found the following linear function to be
efficient to implement and give good performance:

wr = F (rt) = 1.0 − c(rt − 1) (5)

where c is a constant discount factor and rt is the road type
index (≥ 1) with 1 being the lowest major type.

Note that if the user is moving on a side road, using road
weights may lead to a wrong estimate. However, this happens
with a lower probability compared to moving on a major road
as discussed before.

3) Transition Probability: The transition probability is the
probability of moving to the next road segment (state sj,t) given
that the current state is road segment si,t−1. The transition prob-
ability can be estimated as a function based on the difference
between the distance on the input trajectory and the distance
between the projections on the road segments. More formally,
this distance difference (dt) is given by the following equation:

dt = ‖dist(zt, zt−1)− dist(sj,t, si,t−1)‖ (6)

where dist(zt, zt−1) is the geodesic distance between the lo-
cation observations zt and zt−1 and dist(sj,t, si,t−1) is the
geodesic distance between the projections of zt and zt−1 on the
sj,t and si,t−1 roads respectively. The smaller this distance (dt)
is, the larger the transition probability should be. We assume
that this distance difference has an exponential distribution [32].
However, with the much noisier locations in our case and using
an online incremental algorithm, it gives a large number of false
transitions.

To reduce the abrupt transitions, we bias the transition prob-
ability to favor staying on the current road. This is achieved by
weighting the exponential probability according to whether the
transition is on the same road segment or not. Therefore, the
transition probability used in SnapNet is:

p(sj,t|si,t−1) =

{
psame.

1
β e

− dt
β when sj,t = si,t−1

(1 − psame).
1
β e

− dt
β otherwise

(7)

where psame ≥ 0.5 is the probability (weight) of staying on the
same road between transitions.

Fig. 8 shows an example of a user trajectory with and without
the transition weights.

4) The Initial State Distribution: Initially, all road segments
selected by the Candidate Extraction and Filtering module are
assigned equal weights. After each estimation step, the new
initial state distribution is obtained as the product of the current
state distribution by the transition probability matrix to the new

Fig. 8. Effect of using transition weights. Using the unweighted transition,
the map matcher deviates from the actual path as it favors the nearest road.
(a) Unweighted transition. (b) Weighted transition.

TABLE II
SAMPLES OF THE TRACES USED IN THE EVALUATION

candidate road segments (obtained by the Candidate Extraction
and Filtering module). More formally

πt+1 = πt.Pt (8)

where πt is the initial state distribution at time t and Pt is the
state transition matrix at time t calculated as in Section IV-B3.

V. EVALUATION

In this section, we show the evaluation results of SnapNet.
We tested SnapNet on real data traces collected from two cities
in Egypt. Our data consists of 407 km of car driving traces.
These traces cover different representative cases including:
urban, rural, main and side-roads, among others (see Table II).
The data was collected using different Android phones includ-
ing Samsung Galaxy S3 Mini, S4, and S5 phones as well as an
LG Nexus 4. We used OpenStreetMaps for the road network
information.

We implemented the system using Java on a Lenovo Ideapad
S400 laptop with 4 GB RAM, 1.70 GHz core i5 processor,
running the Windows 8 OS. To get cellular-based location
estimates, we use the Google Android Location API with WiFi
turned off. This way, the returned location is estimated based on
the associated cell tower information only as the used phones
do not provide the neighbouring cell towers information. This
provides a low-accuracy location with a median error of 2 km,
as shown in Fig. 1. The location update is reported when a cell-
tower change occurs, which happens at a rate of 2 minutes on
average. For ground truth, we also collected accurate location
data at high sampling rate (1 sample/sec) using a combined
GPS/GLONASS receiver.

The rest of this section is organized as follows: We start by
describing our evaluation methodology and metrics. Then, we
show the effect of the different filters on the system accuracy.
After that, we quantify the effect of the different HMM parame-
ters on performance. Finally, we compare SnapNet with three
baseline HMM map matching techniques.
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Fig. 9. Definition of precision X/Y and recall X/G.

TABLE III
DEFAULT PARAMETER VALUES

A. Evaluation Methodology and Metrics

One of the challenges in evaluating a map matching system
is to construct the ground truth path. Manual construction of
the path is labor intensive. Instead, we apply map matching
to the high accuracy ground truth data collected using the
GPS/GLONASS receiver to obtain the actual driving path. It
has been shown in literature that map matched GPS traces
with a one second sampling rate almost yields the ground truth
path [32].

To evaluate SnapNet, first we find the common matching
sequence of roads X between the map matched output tra-
jectory Y and the ground-truth trajectory G. Based on this
sequence, we compute two evaluation metrics: precision and
recall [32] (see Fig. 9). Precision is defined as the ratio be-
tween the distance traversed on the matching sequence X and
the total distance of the map matched trajectory Y . Recall
is defined as the ratio between the distance traversed on the
matching sequence X and the total distance of the ground truth
trajectory G.

In the following subsections, we show the effect of different
parameters on the system performance. The default parameters
are shown in Table III.

B. Effect of Filters

1) Speed Filter: Fig. 10 shows the effect of changing the
window size of the speed filter on the overall accuracy. At
ws = 0, the speed filter is turned off. At small values of ws, the
accuracy is low due to the effect of noisy points. Increasing the
window size gradually increases the accuracy till it reaches a
maximum value then decreases again due to spanning multiple
speeds within the window. We use the optimal value at ws = 7.

2) α-Trimmed Filter: The α-trimmed filter has two param-
eters: the window size and α. Fig. 11(a) shows the effect of
changing the window size (wa). The figure shows that at a small
window size, the system has low accuracy as the effect of noise
is not completely removed. As the window size increases, the
accuracy increases, then it decreases again due to the loss of
information introduced by smoothing. At wa = 5, the system
has the best accuracy in terms of precision and recall.

Fig. 10. Effects of the speed filter on the system accuracy.

Fig. 11. Effects of the α-trimmed filter parameters on accuracy. (a) Window
size wa. (b) α.

Fig. 12. Effects of the direction filter on the performance.

Fig. 11(b) shows the effect of α on performance. The figure
shows that a value of α = 0.2 balances the performance be-
tween the average and median filters and hence gives the best
accuracy.

3) Direction Filter: Fig. 12 shows the effect of the direction
filter on accuracy. The figure shows that the filter increases the
precision by 7% while maintaining the recall value.

C. Effect of HMM Parameters

1) Road Weighting: Fig. 13 shows the effect of changing
the c parameter of the linear weighting function discussed in
Section IV-B2. The figure shows that increasing the differenti-
ation between roads leads to better accuracy till it saturates at
c = 0.08. Using road weights simultaneously enhances preci-
sion by 15.4% and recall by 13.6%.
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Fig. 13. Effects of the road-type weighting factor on the performance.

Fig. 14. Effects of same road probability biasing on the performance.

2) Road Transition Weighting: Fig. 14 shows the effect of
biasing the transition probability of staying on the same road
discussed in Section IV-B3. The value at psame = 0.5 indicates
no bias. The figure shows that favoring staying at the same
road enhances both the recall and precision concurrently. The
performance saturates at psame = 0.75. We note that while the
effect of the transition weights on the overall accuracy is not
large, due to amortizing the advantage of the weighting over
the entire trace, we can see that the transition weights are still
effective for real-time path visualization as it removes the small
jumps (see Fig. 8).

D. Effect of Localization Error

In this section, we evaluate the effect of the error in the
input locations on the map matcher performance. For this, we
interpolate between the ground truth location (zero error) and
the cellular-based location (maximum error). More specifically,
the test location coordinates loctest = q × locGPS + (1 − q)×
locNetwork, where q is a location quality factor ranging from 0
and 1 that determines how close the test location is to the ground
truth (no errors).

Fig. 15 shows the effect of changing the location quality
parameter q on SnapNet precision and recall. The figure shows
that increasing the quality of the input locations leads to better
accuracy. Nevertheless, even with the lowest quality, i.e., q = 0,
SnapNet can achieve more than 90% precision and recall.

E. Overall System Performance

We compare the overall accuracy of SnapNet with three
other systems: (a) NearRd: Snapping to the nearest road to

Fig. 15. Effects of the input location quality factor q. (a) Precision. (b) Recall.

Fig. 16. Accuracy comparison between SnapNet and other map-matching
techniques.

Fig. 17. Running time of the components of SnapNet.

show the effect of map-matching. (b) cellHMM: A plain HMM
technique that map-matches cellular-based locations without
using any of the additional filters or our HMM modifications.
(c) wiHMM: The plain HMM technique using locations from a
WiFi localization technique. Fig. 16 shows that SnapNet has the
highest accuracy of all techniques. It achieves an enhancement
of 97.4% and 34% in precision and recall respectively over
the plain HMM with cellular data, highlighting the combined
advantage of the different modules of the system.

Fig. 17 shows the average latency per input location for each
module (log scale). The latency is defined as the time taken
from the new point arrival in the system until its best match
is calculated. This time includes adding interpolated points
and map-matching them, calculating the HMM parameters of
the new point, adding a new row to the Viterbi matrix, and
estimating the best match for the new point. The figure shows
that the overall latency of SnapNet is about 0.58 ms. Most
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TABLE IV
EFFECTS OF USING ROAD WEIGHTS ON TYPICAL

AND NON-MAJOR ROAD TRACES

of the running time is consumed by the HMM parameters
estimation, which involves calculating complex functions over
a large number of candidates, due to the large error of the
input cellular-based locations. The online Viterbi algorithm has
the least running time as it runs on the unfiltered points only.
Compared to the window-based plain HMM technique, the
online Viterbi algorithm and the incremental HMM module
reduce the latency by more than multiple orders of mag-
nitude (latency of milliseconds compared to seconds). The
NearestRoad technique has the least running time as it only
requires calculating the distance between each point and its
candidate roads then selecting the road with the least distance.

F. Effect of Violating Assumptions

Since SnapNet gives higher observation probability to major
roads (see Section IV-B2), it is likely that its performance will
degrade when the whole trip is traveled over non-major roads.
In order to measure this degradation, we evaluate the system
with traces over non-major roads only and typical traces mostly
traveled on major roads. Table IV summarizes the results. For
the non-major roads case, adding the road weights (when this
assumption is not correct) decreases the accuracy by about
12%. The overall performance in this case is still better than
other state-of-the-art systems that use the cellular data for
localization due to the other modules of SnapNet.

Observing the second row of Table IV, when the weights
are not used, there is a slight difference in accuracy between
major and non-major roads, which reflects the system worst-
case performance. Using road weights, however, leads to a
significant enhancement in performance for the typical case of
driving over major roads most of the time (see Section IV-B2).

VI. CONCLUSION

We presented SnapNet, a real-time map matcher for noisy
cellular-based trajectory traces. SnapNet is unique in targeting
mainstream cell phones which can only provide its associated
cell-info for localization systems; opening up new possibilities
for location-based services from both network and client side.
We provided the SnapNet’s system architecture and the differ-
ent filtering and preprocessing modules that help it reduce the
noise in the input data and handle the data sparsity. We also
presented the details of our novel incremental HMM algorithm
that leverages the digital map information and different heuris-
tics to enhance the estimation accuracy and maintain real-time
operation and online Viterbi to provide online map matching.

Evaluation of SnapNet on actual cellular-based traces col-
lected using Google’s network-based localization, shows that
SnapNet can achieve a map matching precision and recall
of more than 90% which maps to over 97% and 34% en-
hancement in precision and recall respectively when compared

to traditional HMM map matching algorithms. In addition,
SnapNet has an average running time of 0.58 ms per location
estimate, which is three orders of magnitudes better than tradi-
tional window-based HMM algorithms, making it suitable for
online applications.
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