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Abstract—Indoor localization using mobile sensors has gained momentum lately. Most of the current systems rely on an extensive

calibration step to achieve high accuracy. We propose SemanticSLAM, a novel unsupervised indoor localization scheme that bypasses

the need for war-driving. SemanticSLAM leverages the idea that certain locations in an indoor environment have a unique signature on

one or more phone sensors. Climbing stairs, for example, has a distinct pattern on the phone’s accelerometer; a specific spot may

experience an unusual magnetic interference while another may have a unique set of Wi-Fi access points covering it. SemanticSLAM

uses these unique points in the environment as landmarks and combines them with dead-reckoning in a new Simultaneous

Localization And Mapping (SLAM) framework to reduce both the localization error and convergence time. In particular, the phone

inertial sensors are used to keep track of the user’s path, while the observed landmarks are used to compensate for the accumulation of

error in a unified probabilistic framework. Evaluation in two testbeds on Android phones shows that the system can achieve 0:53meters

human median localization errors. In addition, the system can detect the location of landmarks with 0.83 meters median error. This is

62 percent better than a system that does not use SLAM. Moreover, SemanticSLAM has a 33 percent lower convergence time

compared to the same systems. This highlights the promise of SemanticSLAM as an unconventional approach for indoor localization.

Index Terms—Unconventional localization, semantic SLAM, indoor localization, unsupervised localization

Ç

1 INTRODUCTION

ALTHOUGH GPS is considered a ubiquitous outdoor locali-
zation technology, there is still no equivalent indoor

technology that can provide similar accuracy and scale. This
can be due to a number of reasons: First, a class of indoor
localization technologies, e.g., [2], [3], [4], [5], [6], [7] depends
on special hardware installment, which in turn limits their
scalability. Second, Wi-Fi-based localization systems, e.g., [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], offer ubiquitous
localization, however, they require tedious calibration effort.
Third, to reduce this calibration effort, a number of systems
have been proposed, e.g., [16], [18], [19]; nevertheless, in order
to do that, they usually need to sacrifice accuracy.

Recently, techniques that leverage the inertial sensors
(mainly the accelerometer, gyroscope, and compass) on cell

phones have been proposed [20], [21]. Such techniques
depend on dead-reckoning, where the accelerometer signal
is used to count the user steps and the compass to deter-
mine the user direction. However, since dead-reckoning
error accumulates quickly, re-calibration of the user location
is required. This is usually performed using the GPS in out-
door environments. However, GPS is unreliable indoors,
and hence, other approaches are required for error resetting.

In this paper, we propose SemanticSLAM, a system that
leverages the smart phone sensors to detect unique points
in the indoor environment, i.e. semantic landmarks, that
can be used to reset the dead-reckoning error indoors.
Starting from a building floorplan that is either manually
entered or automatically generated [22], [23], [24], Semanti-
cSLAM discovers the landmarks and their locations in a
crowd-sensing approach based on the data collected from
the building users and their dead-reckoned locations. These
discovered landmarks are then used to reset the error in
the dead-reckoning estimation and hence leads to better
localization accuracy. Note that this recursive dependence
between estimating the landmark location and the user loca-
tion lends itself naturally to the simultaneous localization
and mapping (SLAM) framework commonly used in the
robotics domain [25]. Therefore, at the core of Semanti-
cSLAM is a novel SLAM framework that handles the charac-
teristics of semantic landmarks while being robust to
landmark recognition errors.

A semantic landmark is defined by two attributes: its
sensors pattern and physical location. Based on this, Seman-
ticSLAM identifies two types of semantic landmarks: seed
landmarks (SLMs) and organic landmarks (OLMs). When
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both attributes of a semantic landmark are known a priori,
the landmark is defined as a seed landmark, which can be
mapped to the physical environment. For example, a person
using the elevator will have a unique known pattern affect-
ing the phone acceleration. On the other hand, the attrib-
utes, i.e., pattern and physical location, of an organic
landmark cannot be known a priori. Therefore, Semanti-
cSLAM learns them in an unsupervised manner. For exam-
ple, a point in the building with a dead cellular reception
can be used as an organic landmark. Note that a seed land-
mark location and pattern can also be learned, if needed, in
an unsupervised way using the same technique used for
organic landmarks. However, entering them initially boot-
straps the system and speeds convergence.

Evaluation of SemanticSLAM using Android phones in a
university building and a mall shows that the system can
reach 0:53 m median accuracy for human location detection
while localizing the landmarks to within 0.83 m median
error. In addition, SemanticSLAM leads to 33 percent
enhancement in convergence time compared to systems
that do not use the SLAM framework.

In Summary, the contributions of this paper are:

� Wepresent the SemanticSLAM architecture and frame-
work that leverages smart phone sensors to both
dead-reckon the user location and identify semantic
landmarks. These landmarks are used in a SLAM
probabilistic framework to reset the accumulated
localization error.

� We present supervised and unsupervised techniques
for the automatic detection of both seed and organic
landmarks. We show that adequate landmarks exist
in indoor environments, leading to accurate localiza-
tion with no calibration.

� We implement SemanticSLAM on different Android
phones and evaluate it in two different testbeds
quantifying its accuracy and fast convergence time.

The rest of the paper is organized as follows: Section 2
gives a background about the SLAM framework. Section 3
gives the architectural overview of SemanticSLAM while
Section 4 gives the details of the landmarks extraction.
The proposed semantic SLAM framework is presented in
Section 5. In Section 6, we present the system evaluation.
Finally, we discuss related work and conclude the paper in
Sections 7 and 8 respectively.

2 BACKGROUND

In this section, we provide a brief background on the SLAM
framework as well as the advantage of the FastSLAM algo-
rithmwe choose as our implementation framework [26], [27].

2.1 Overview of the SLAM Framework

SLAM was originally used by mobile robots [25] to enable
them to build an estimated map of an environment and, at
the same time, use this map to deduce the robot location. To
do that, the robot gathers information about sensed nearby
landmarks and concurrently measures its own motion. Both
types of measurements are noisy. SLAM provides a proba-
bilistic framework to estimate both the map (Q) along with
the robot pose (location (xt; yt) and orientation (ft)). In

particular, the goal in SLAM is to find the estimated pose

(ŝt) and map (Q̂t) that maximize the following probability
density function:

p
�
st;Qjut; zt; nt

�
: (1)

Where ut is the robot motion update (displacement and
heading) at time t obtained from the robot sensors, with
ut ¼ u1; . . . ; ut capturing the complete history, zt ¼ z1; . . . ; zt
are the history of landmark position observations relative to

the user position, and nt ¼ n1; . . . ; nt are data association
variables, where nt specifies the identity of the landmark
observed at time t.

The traditional approach for estimating the probability
density function in Eq. (1) was to use an Extended Kalman
Filter (EKF) [28], [29]. The EKF approach represents the
robot’s map and pose by a high-dimensional Gaussian den-
sity over all map landmarks and the robot pose. The off-diag-
onal elements in the covariance matrix of this multivariate
Gaussian represent the correlation between errors in the
robot pose and the landmarks in the map. Therefore, the EKF
can accommodate the natural correlation of errors in themap.

In the EKF approach, the probability density function
P ðst;Qjut; zt; ntÞ is factorized into two independent models:
a motion model P ðstjut; st�1Þ and a measurement model
pðztjst; unt ; ntÞ, where unt is the location of landmark nt

observed at time t. The motion model describes how a con-
trol ut, asserted in the time interval ½t� 1; tÞ, affects the
user’s pose. On the other hand, the measurement model
describes how measurements evolve from state. Both mod-
els are traditionally modelled by nonlinear functions with
independent Gaussian noise:

pðstjut; st�1Þ ¼ hðut; st�1Þ þ dt; (2)

pðztjst;Q; ntÞ ¼ gðst; untÞ þ "t: (3)

Here h and g are nonlinear functions, and dt and "t are
Gaussian noise variables with covariance Rt and Pt,
respectively.

One limitation of the EKF-based approach is the compu-
tation complexity, which is quadratic in the number of land-
marks [27]. Another key limitation is the data association
problem, i.e. how to determine the identity of the detected
landmarks when multiple of them have a similar signature
(e.g. two nearby stairs, elevators, or turns), which can lead
to different maps based on the chosen association. Gaus-
sians cannot represent such multi-modal distribution over
the different candidate landmarks. The typical approach to
handle this problem in the EKF-SLAM literature is to
restrict the inference to the most probable landmark given
the robots current map [30], [31], [32]. However, these tend
to fail to converge when the estimated data association is
incorrect. Other approaches have been proposed to inter-
leave the data association decisions with map building to
revise past data association decisions [33], [34], [35], [36].
However, such approaches cannot be executed in real-time
and hence cannot be used for human tracking.

The FastSLAM approach [26], [27] was introduced to
address the issues of the EKF-SLAM approach. FastSLAM
combines particle filters [37], [38] and extended Kalman
filters. The idea is to exploit a structural property of
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the SLAM problem, where landmark estimates are condi-
tionally independent given the robot path. In other words,
correlations in the uncertainty among different landmarks
arise only through robot pose uncertainty; If the robot’s
correct path is known, the errors in its landmark estimates
are independent of each other. This observation allows
FastSLAM to factor the posterior over poses and maps.

More formally, in FastSLAM the robot path, st ¼ ðs1; . . . ;
st), is estimated as:

pðst;Qjzt; ut; ntÞ ¼ pðstjzt; ut; ntÞ
YNL

n¼1

pðunjst; zt; ntÞ: (4)

Where NL is the number of landmarks. This factorization
is exact and universal.

Since the user path is not known in advance, FastSLAM
estimates the first term (the robot path (st)) by a particle
filter, where each particle represents a possible path. Condi-
tioned on these particles, the individual map errors are
independent, hence the second term (mapping problem)
can be factored into NL separate problems, one for each
landmark in the map. The individual landmark location
probability density function (pðunjst; zt; ntÞ) is estimated
using an EKF. More formally, the posterior of the mth parti-

cle (S
½m�
t ) contains a path st;½m� and NL landmark estimates

denoted by the landmark type (f̂n;t), mean m
½m�
n;t and covari-

ance S
½m�
n;t :

S
½m�
t ¼ st;½m�; f̂1;t;m

½m�
1;t ;S

½m�
1;t|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Landmark u1

; . . . ; f̂N;t;m
½m�
N;t;S

½m�
N;t|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Landmark uNL

: (5)

2.2 Advantages of the FastSLAM Algorithm

The factorization employed by FastSLAM leads to an algo-
rithm that is logarithmic in the number of landmarks, as
compared to the quadratic time complexity for the EKF-
SLAM. Moreover, data association decisions in FastSLAM
can be made on a per-particle basis. Therefore, the algo-
rithm maintains posteriors over multiple data associations,
not just the most likely one as in the EKF-SLAM approach.
This makes FastSLAM significantly more robust to data

association problems [26], [27]. FastSLAM can also cope
with non-linear models and is proven to converge under
certain assumptions [27]. Therefore, we leverage the Fast-
SLAM approach in SemanticSLAM due to these advantages.

3 SYSTEM OVERVIEW

Fig. 1 shows the system architecture. The system consists of
four main modules: Sensor data collection and features
extraction, landmark detection, dead-reckoning, and the
SemanticSLAM framework. In the balance of this section, we
give an overview of the different modules.

3.1 Sensor Data Collection and Features Extraction

Sensors data is collected from the users’ mobile phones in a
crowd-sensing manner. Collected sensors include inertial
sensors (accelerometer, compass, and gyroscope) as well as
Wi-Fi and cellular access points and their associated signal
strength. Note that inertial sensors have a low-energy pro-
file while Wi-Fi and cellular information is available during
the phone normal operation. Therefore, SemanticSLAM has
a minimal effect on the phone energy consumption.

Collected sensors data is then analyzed to extract the dif-
ferent features that can be used to identify the landmarks.

3.2 Dead-Reckoning

Inertial sensors are combined to provide an estimate of the
user location. Starting from a reference point, e.g., last GPS
location of the person outside a building, the user next loca-
tion is obtained based on the motion update measurement
ut ¼ flt;ftg, where lt is the displacement and ft is the head-
ing change at time t.

3.2.1 Displacement from the Accelerometer

One possible solution to obtain the displacement is to double-
integrate the accelerometer readings. However, due to the
noisy cheap sensors on the phones, error accumulates quickly
and can reach 100 m within seconds [39]. A better approach
[21], [39] is to use a step counting approach based on the
human walking pattern. We use the UPTIME approach [39]
as it adapts to the user step size based on her gait.

3.2.2 Orientation using Compass/Gyroscope

The magnetic field in indoor environments, due to ferromag-
netic material and electrical objects in the vicinity, is very
noisy, which can severely degrade the dead-reckoning perfor-
mance. To address this issue, we fuse the gyroscope andmag-
netic sensor readings. The gyroscope provides accurate short
term relative angle change while the magnetometer provides
long term stability. In particular, we leverage the correlation
between the two sensors readings to determine the points of
time where the compass reading is accurate. We use these
points as reference points (landmarks) tomeasure the relative
angle from using the gyroscope until the detection of the next
angular reference point [40].

3.3 Landmark Detection

Even though SemanticSLAM’s step counting approach
reduces the dead-reckoning error accumulation, displace-
ment error is still unbounded, which cannot be used for

Fig. 1. SemanticSLAM system architecture.
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indoor tracking. Therefore, SemanticSLAM leverages a novel
approach of detecting unique points in the environment, i.e.
landmarks, that can be used to reset the errors. Specifically,
whenever the user phone detects a landmark based on a
unique multi-modal sensor signature, her position is reset to
the position of this landmark, resetting the dead-reckoning
error.We define two types of landmarks: seed landmarks and
organic landmarks.

Seed landmarks are landmarks that can be mapped to
physical points in the environment and are used to bootstrap
the system. Examples of SLMs include stairs, elevators, esca-
lators, etc. Those SLMs have a unique effect on one or more
of the phone sensors and hence can be uniquely detected.

On the other hand, organic landmarks do not necessarily
map to an object and are detected based on their unique
signature on the sensors. Usually, these are detected based on
detecting consistent anomalies in one ormore sensor patterns.

3.4 The SemanticSLAM Framework

Since the landmark location is estimated based on the user
location, which in turn is a function of the detected landmark
location; this recursive definition lends itself naturally to a
SLAM framework. SemanticSLAM provides a novel frame-
work that uses landmarks as observations to enhance both
the user location estimation and the landmark identification.

In particular, the dead-reckoning state as well as the
detected landmarks are fed into the SemanticSLAMalgorithm
which calculates the current pose of the tracked entity and
updates the landmarks positions in a unified framework.

4 LANDMARKS DETECTION

Many points in indoor environments exhibit unique sensors
signatures, which can be used as landmarks. Indoor envi-
ronments are rich with ambient signals, like sound, light,
magnetic field, temperature, Wi-Fi, 3G, etc. Moreover, dif-
ferent building structures (e.g., stairs, doors, elevators) force
humans to behave in certain ways.

In this section, we give the details of the detection of both
the seed and organic landmarks.

4.1 Seed Landmarks

Seed landmarks are landmarks that can be associated with
specific objects in the environment such as elevators and
stairs. If the building floorplan is known (which is often nec-
essary to visualize the user’s location), then we can infer the
locations of doors, elevators, staircases, escalators, etc. This
implies that the locations of seed landmarks are immedi-
ately known. As long as the smartphone can detect these
SLMs while passing through them, it can recalibrate its loca-
tion. Thus, the goal of the SLM detection module is to define
sensors patterns that are global across all buildings.

In this section, we discuss three inertial sensors-based of
SLMs that are common in indoor environments: Elevators,
Staircases, and Escalators. Inertial sensors have the advan-
tage of being ubiquitously installed on a large class of smart
phones, having a low-energy footprint, and being always
on during the phone operation (to detect the change of
screen orientation). Fig. 2 shows a classification tree for
detecting the three classes of interest and separating them
from walking and being stationary.

Elevator:A typical elevator usage trace (Fig. 3) consists of a
normal walking period, followed by waiting for the elevator
for some time, walking into the elevator, standing inside for
a short time, an over-weight/weight-loss occurs (depending
on the direction of the elevator), then a stationary period
which depends on the number of the floors the elevator
moved, another weight-loss/over-weight, and finally a
walk-out. The accelerometer shows distinct signatures in an

Fig. 2. Classification tree for detecting SLMs. The top level separates the elevator based on its unique acceleration pattern. The second level sepa-
rates the constant velocity classes (stationary and escalator) from the other two classes (walking and stairs) based on the variance of the accelera-
tion. The third level uses the variance of magnetic field to separate the escalator from the stationary case and the correlation between the Z and Y
acceleration components to separate between the stairs and walking cases.

Fig. 3. Accelerometer signature inside the elevator (caused by the eleva-
tor starting and stopping).
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elevator in the form of a pair of symmetric bumps in opposite
directions, as shown in Fig. 3. To recognize the elevator
motion pattern, we use a finite state machine (FSM) that
depends on the observed state transitions. Different thresh-
olds are used tomove between the states.

Evaluation over 22 traces shows that the thresholds are
robust to changes in the testbed and can achieve 0:6 and 0
percent false positive and negative rates, respectively.

Escalator: Once the elevator has been separated, it is easy
to separate the classes with constant velocity (escalator
and stationary) from the other classes (walking and stairs)
using the variance of acceleration. To further separate the
escalator from stationarity, we found that the variance of
the magnetic field can be a reliable discriminator (Fig. 4)
due to the motor of the escalator.

Stairs: Once the scenarios with constant speed are sepa-
rated, we need to differentiate between the stairs and walk-
ing case. The main observation here is that when the user is
using the stairs, her speed increases or decreases based on
whether the gravity is helping or not. This creates a higher
correlation between the acceleration in the direction of
motion and direction of gravity as compared to walking. As
reported later, staircases can sometimes lead to false nega-
tives (1:8 percent).

4.2 Organic Landmarks

In addition to seed landmarks, some landmarks can be
detected dynamically. Most of indoor environments offer
some ambient signatures across one or many sensing dimen-
sions. These signatures can be in the magnetic domain,
where metals in a specific location may produce unique and
reproducible fluctuations on the user’s magnetometer near
that location. Signatures could also be Wi-Fi-based, a spot
may overhear a set of Wi-Fi base stations, but the set may

change at short distances away from that spot. A few (dead)
spots inside a buildingmay not overhear anyWi-Fi or GSM/
3G signals, which by itself is a signature. Further, even a
water-fountain could be a signature, users that stop to drink
water may exhibit some common patterns on the accelerom-
eter andmagnetometer domains.

The task of discovering organic landmarks is rooted in
(1) recognizing distinct patterns from many sensed signals,
(2) and testing whether a given pattern is spatially confined
to a small area. Fig. 5 illustrates the flow of operations.
All the sensor readings are gathered in a matrix: element
< i,j> of the matrix contains sensor readings from phone i
at time j. These sensor readings are essentially features of
the raw sensed values (from the accelerometer, compass,
gyroscope, magnetometer, andWi-Fi). Features for the mag-
netic and inertial sensors include mean, max, min, variance,
mean-crossings, while for Wi-Fi, they areMAC ID and RSSI.

These features are normalized between ½�1; 1� and fed to
a K-means clustering algorithm. The clustering process is
executed for each individual sensing dimension, as well as
their combinations (such as accelerometer and compass
together). Fig. 6, for example, shows the clusters from the
magnetometer readings for K ¼ 3. The clusters were
recorded for different values of K. The goal is to identify
clusters that have low similarity with all other clusters; this
will suggest a good signature. For this, we compute the cor-
relation between a given cluster and all other clusters – if
the maximum correlation is less than a similarity threshold,
this cluster is considered as a candidate for landmark.

To qualify the candidate cluster as an OLM, it must
also be confined to a small geographical area. For this, we
first test whether the members of a cluster are within the
same Wi-Fi area (i.e., they overhear the same Wi-Fi APs).
While this is necessary, it is not sufficient because many
Wi-Fi areas are large. Therefore, for clusters within a Wi-
Fi area, we compute the locations for each of their mem-
bers. If locations of all cluster-members are indeed within
a small area (we use 4m2) then we declare this cluster as
an OLM. We found that using the accelerometer, the
points inside one of the sensor clusters were scattered all
over the indoor space; upon investigation, we detected
that this cluster roughly captured walking patterns. On
the other hand, another cluster that proved to be within

the 4m2 area was from a magnetic signature near an elec-
trical service room in the building. The location of the
OLM is obtained through the SemanticSLAM recursive
framework (Section 4).

Fig. 4. Difference in magnetic variance when a user is climbing stairs
and escalator.

Fig. 5. A matrix showing sensor readings collected by devices across
time. Readings are clustered and the location of cluster members is
computed. If all cluster members fall within a small region, an OLM is
detected.

Fig. 6. Clusters identified by the K-means algorithm.
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While the above describes the generalized version of the
OLM detection algorithm, the different sensing dimensions
require some customization, discussed next.

4.2.1 Wi-Fi Landmarks

We use MAC addresses of Wi-Fi APs and their correspond-
ing RSSI values as features. Only APs with RSSI stronger
than a threshold are considered. Applying K-means cluster-
ing, we identify small areas (4m2) that have low similarity
with all locations outside that area. We compute the similar-
ity of two locations, l1 and l2, as follows:

Let us denote the sets of Wi-Fi APs overheard at locations
l1 and l2 as A1 and A2, respectively. Also, let A ¼ A1

S
A2.

Let fiðaÞ denote the RSSI of AP a, a 2 A, overheard at loca-
tion li; if a is not overheard at li, then fiðaÞ ¼ 0. We now
define similarity S 2 ½0; 1�, between locations l1 and l2 as:

S ¼ 1

jAj
X
8a2A

minðf1ðaÞ; f2ðaÞÞ
maxðf1ðaÞ; f2ðaÞÞ:

The rationale for this equation is to add proportionally large
weights to S when an AP’s signals are similarly strong at
both locations, and vice versa. We choose a threshold of 0:4
in our system to define a Wi-Fi landmark, indicating that all
locations within the Wi-Fi landmark need to exhibit less
than 0:4 similarity with any other location outside the land-
mark. Fig. 7 shows this tradeoff using traces from the Engi-
neering Building. We observed that 0:4 was a reasonable
cut-off point, balancing quality and quantity of Wi-Fi
OLMs. In addition, we found that this value gives compara-
ble performance for the two testbeds.

4.2.2 Magnetic and Inertial Sensor Landmarks

Indoor environments are characterized by at least a few
turns (at the end of corridors, into offices, classrooms, stairs,
etc.). Since the gyroscope offers reliable angular displace-
ments, we recognize the opportunity to use them as organic
landmarks. We design a special feature called the bending
coefficient. Essentially, the coefficient captures the notion of
path curvature, computed as the length of the perpendicu-
lar from the center of a walking segment to the straight line
joining the end-points of the segment. We compute the
bending coefficient over a sliding window on the user’s
walking path, and use them as a separate feature. Later,

when we cluster on bending coefficient and Wi-Fi together
as features, similar turns within a Wi-Fi area gather in the
same cluster. The turns in the cluster could still be doors of
adjacent classrooms in a corridor – these turns may very
well lie within the same Wi-Fi area. To avoid gathering all
these turns into the same landmark, we check if the cluster
is confined to within a 4m2 area; only then is the cluster
declared a landmark.

5 SEMANTICSLAM: SEMANTIC SIMULTANEOUS

LOCALIZATION AND MAPPING

Once the landmarks have been detected, our system com-
bines them with a dead-reckoning approach to both esti-
mate the person’s location and the landmark location. For
that, we propose a modified FastSLAM algorithm [27] with
unknown data association with changes to cope with the
semantic landmarks detection. FastSLAM has the advan-
tage of proved convergence even with a single particle,
where it has a constant update time in this case, as well as it
incorporates the measurement in the motion mode. This last

Fig. 7. Tradeoff between similarity threshold and number of Wi-Fi
landmarks.

TABLE 1
Notations Used in the Paper

Notation Definition

f̂ The detected landmark type (e.g. elevator pattern)

ût The control data at time t (the dead-reckoning input)

ût The history of control data t (ût ¼ û1; û2; . . . ; ût)

l̂t The estimated displacement at time t from the sensors

½m� The particle index

L
½m�
t

The sampled step length for particle ½m� at time t

f̂t
The sensors heading change estimate at time t

F
½m�
t

The sampled heading change for the particle ½m�
st The user’s pose at time t (st ¼ fsxt ; syt ; sft g)
ŝt The predicted pose at time t

st The posterior over the entire path (st ¼ s1; s2 . . . ::st)

S
½m�
t

The posterior over all path and landmark positions for

one particle (S
½m�
t ¼ st;½m�; f̂1;t;m

½m�
1;t ;S

½m�
1;t|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Landmark u1

; . . . ; f̂N;t;m
½m�
N;t;S

½m�
N;t|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Landmark uNL

)

zt The measurement of landmark position at time t (zt ¼ 0)

ẑ
½m�
n̂t

The measurement estimation of particle ½m�with

observed landmark n̂ at time t

Q The landmark map

unt The location of the landmark n at time t

Qt The landmark observation covariance matrix at time t

Rt The measurement covariance at time t

Pt The covariance matrix of the control data at time t

m½m�
st

The mean of the estimated pose st at time t for particle ½m�P½m�
st

The covariance matrix of the estimated pose st at time t

for particle ½m�
h Normalization factor

pn The likelihood correspondence of landmark nwith the

observed pattern f̂ at time t

p0 The likelihood of observing a landmark for the first time

K
½m�
t

Kalman gain for particle ½m� at time t

m
½m�
n̂t ;t

The mean of the estimated Gaussian position of landmark

n̂t at time t for particle ½m�P½m�
n̂t ;t

The covariance matrix of the estimated Gaussian position

of landmark n̂t at time t for particle ½m�
w

½m�
t

The weight of particle ½m� at time t
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feature allows it to handle the case when the noise in the
person motion is large relative to the measurement noise.
Table 1 summarizes the notations used in this section.

The algorithm consists of three steps: sampling, map
update, and re-sampling. Without loss of generality, we
assume that only a single landmark is observed at each time t.

5.1 Sampling the User’s Pose

The first step of SemanticSLAM algorithm is estimating the
current pose of the tracked entity. Given the control data ût
obtained from the dead reckoning step, the measurement zt,

and the previous pose s
½m�
t�1, the current pose s

½m�
t for each par-

ticle ½m� is sampled by the following probability distribution:

s
½m�
t � P

�
stjst�1;½m�; ût; zt; nt

�
: (6)

This distribution can be divided into the product of two
factors: the next state distribution, and the probability of the
measurement zt as:

P ðstjst�1;½m�; ût; zt; ntÞ ¼ pðstjs½m�
t�1; utÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

st�Nðhðs½m�
t�1

;utÞ;PtÞ

h½m�
Z

pðztjunt ; st; ntÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
zt�Nðgðunt ;stÞ;RtÞ

pðunt jst�1;½m�; zt�1; nt�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
unt�Nðm½m�

nt;t�1
;S

½m�
nt;t�1

Þ

:
(7)

The next state distribution depends on the estimated
control data ût ¼ fl̂t; f̂tg with displacement l̂t and heading

change f̂t:

ŝ
½m�
t � P

�
stjs½m�

t�1; ût

�
: (8)

Assuming Gaussian-distributed errors for both l̂t and f̂t,
the sampled displacement and heading for particle ½m� at
time t is calculated as:

L
½m�
t � Nðl̂t; slÞ (9)

f
½m�
t � Nðf̂t; sfÞ; (10)

where sl and sf are the variance of the displacement and
heading estimation errors respectively.

Therefore, the user’s sampled pose in Eq. (8) can be
rewritten as:

ŝ
½m�;f
t ¼ s

½m�;f
t�1 þ f

½m�
t (11)

ŝ
½m�;x
t ¼ s

½m�;x
t�1 þ L

½m�
t cos

�
ŝ
½m�;f
t

�
(12)

ŝ
½m�;y
t ¼ s

½m�;y
t�1 þ L

½m�
t sin

�
ŝ
½m�;f
t

�
: (13)

Note that equations (9) through (13) are the implementa-
tion of the non-linear hð:Þ function in Eq. (2).

The probability of the measurement zt involves an inte-
gration over all possible landmark locations unt , which is
not possible in the general case. To address this issue, the
FastSLAM framework approximates gð:Þ (from Eq. (3)) as a
linear function, leading to a closed form solution as:

gðunt ; stÞ � ẑ½m�
nt

þGu;n:
�
unt � m

½m�
n;t;t�1

�þGs;n:ðst � ŝ
½m�
n;t Þ; (14)

where ẑ
½m�
n;t ¼ gðm½m�

n;t�1; ŝ
½m�
n;t Þ is the predicted measurement,

ŝ
½m�
t ¼ hðs½m�

t�1; utÞ is the predicted user’s pose (from Eq. 8),

and u
½m�
n;t ¼ m

½m�
n;t�1 is the predicted landmark location. The

matrices Gu;n and Gs;n are the Jacobians of gð:Þ with respect
to u and s respectively.

Thus, the proposal distribution in Eq. (6) is Gaussian
with the parameters:

S
½m�
sn;t

¼ �
GT

s;nQ
½m��1
n;t Gs;n þ P�1

t

��1
(15)

m½m�
sn;t

¼ ŝ
½m�
n;t þ S

½m�
sn;t

GT
s;nQ

½m��1
n;t

�
zt � ẑ

½m�
n;t

�
; (16)

where Q
½m�
n;t ¼ Gu;nS

½m�
n;t�1G

T
u;n þRt is the landmark observa-

tion covariance matrix, Rt is the measurement covariance
matrix and zt is the actual landmark position observation.

For the SemanticSLAM problem, we set:

ẑ
½m�
n;t ¼ g

�
m
½m�
n;t�1; ŝ

½m�
n;t

� ¼ ����m½m�
n;t�1 � ŝ

½m�
n;t

���� (17)

reflecting that the measurement is the distance between the
landmark and the current user’s location. Moreover, we set
zn;t ¼ 0 indicating that the landmark is observed when the
user is at the landmark location.

Therefore, the final user position is sampled from the dis-
tributionNðm½m�

sn;t
;S½m�

sn;t
Þ

5.2 Map Update

Each particle has an independent map that contains the
locations of the landmarks represented by their mean (m),
covariance matrix (S) and the associated landmark pattern
(f). The purpose of the map update step is to update the
location of the currently detected landmark. Due to the
inherent sensors noise, there is ambiguity in landmark
detection related to both the landmark locations and its
type. Therefore, in SemanticSLAM, we compute the proba-
bility of actually observing each landmark (f) when the

detected pattern is f̂ . This uncertainty is represented by a
confusion matrix, where each cell ði; jÞ in the matrix repre-

sents pðfijf̂jÞ for each landmark types i, j. Given this confu-
sion matrix and the position uncertainty Qn for each
landmark n, the likelihood of correspondence with land-
mark n is calculated based on an EKF approximation [41] as:

pn ¼ hj2pQn;tj�
1
2exp � 1

2
ẑTn;t:Q

�1
n;t ẑn;t

� 	
:pðftjf̂tÞ; (18)

where h is the normalization factor. Note that this landmark
likelihood takes into account the distance between the land-
mark and the current user pose, the location uncertainty,
and the confusion between the observed and actual land-
mark type.

We also assume that the probability of observing a new
landmark given the detected pattern can be calculated as:

pn ¼ hp0:pðftjf̂tÞ; (19)

where p0, the probability of observing a new landmark, is a
constant determined empirically.
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Finally, the landmark with the greatest probability (n̂t) is
selected as the currently observed landmark and its location
is updated using the standard EKF formulas as:

K
½m�
t ¼ S

½m�
n̂t;t�1G

T
u;n̂t

Q
½m��1
n̂t;t

(20)

m
½m�
n̂t;t

¼ m
½m�
n̂t;t�1 �K

½m�
t ẑTn̂t;t (21)

S
½m�
n̂t;t

¼ ðI �K
½m�
t Gu;n̂tÞS½m�

n̂t;t�1: (22)

If it is more probable that the observed landmark is a new
landmark, then a new landmark is added to themap,with the
current position of the tracked entity s

½m�
t as its location and

themeasurement uncertaintyRt as its covariancematrix.
Note that SemanticSLAM inherits the property of Fast-

SLAM that there are multiple hypothesis of the possible
landmark, each corresponding to a different particle. In
other word, each particle has its own belief in the currently
observed landmark. This multi-hypothesis property
provides SemanticSLAM with robustness to large errors as
discussed in Section 2.

Algorithm 1. SemanticSLAM(zt; ut; St�1)

1: form ¼ 1 toM do do

2: retrieve hs½m�
t�1; N

½m�
t�1; w

½m�
t�1; hf ½m�

1;t�1;m
½m�
1;t�1;S

½m�
1;t�1i; . . . ; hf ½m�

N;t�1;

m
½m�
N;t�1;S

½m�
N;t�1ii from St�1

3: for n ¼ 1 toN
½m�
t�1 do do " calculate sampling distribution

4: ŝ
½m�
t � P ðstjs½m�

t�1; ûtÞ " predict pose

5: ẑ
½m�
n;t ¼ gðm½m�

n;t�1; ŝ
½m�
n;t Þ " predict measurement

6: S½m�
sn;t

¼ ½GT
s;nQ

½m��1
n;t Gs;n þ P�1

t ��1
" Cov of proposal

distribution

7: m½m�
sn;t

¼ ŝ
½m�
n;t þ S

½m�
sn;t

GT
s;nQ

½m��1
n;t ðzt � ẑ

½m�
n;t Þ " mean of

proposal distribution

8: s
½m�
n;t � Nðm½m�

sn;t
;S½m�

sn;t
Þ " sample pose

9: pn ¼ hj2pQn;tj�
1
2expf� 1

2 z
T
t :Q

�1
n;tztg:pðftjf̂tÞ

" correspondance likelihood

10: end for
11: p

1þN
½m�
t�1

¼ hp0:pðftjf̂tÞ " likelihood of new landmark

12: n̂ ¼ argmaxfn21;...;1þN
½m�
t�1

gpn " ML correspondence

13: N
½m�
t ¼ maxfN ½m�

t�1; n̂g " new number of features

14: if n̂t ¼ 1þN
½m�
t�1 then " is new landmark?

15: m
½m�
n̂t;t

¼ s
½m�
t " initialize mean

16: S
½m�
n̂t;t

¼ Rt " initialize covariance
17: else
18: K

½m�
t ¼ S

½m�
n̂t;t�1G

T
u;n̂t

Q
½m��1
n̂t;t

" calculate Kalman gain

19: m
½m�
n̂t;t

¼ m
½m�
n̂t;t�1 �K

½m�
t ẑTn̂t;t " update mean

20: S
½m�
n̂t;t

¼ ðI �K
½m�
t Gu;n̂t ÞS½m�

n̂t;t�1 " update covariance

21: end if

22: w
½m�
t ¼ w

½m�
t�1:p

½m�
n̂t

" importance weight

23: end for
24: loop M times
25: draw random indexmwith probability a w½m� " resample
26: add hs½m�

t ;N
½m�
t ; w

½m�
t ; hf ½m�

1;t ;m
½m�
1;t ;S

½m�
1;t i; . . . ; hf ½m�

N;t ;m
½m�
N;t;S

½m�
N;tii to St

27: end loop

5.3 Resampling

Each particle represents an estimate of the tracked entity
pose with a weight w½m� reflecting the confidence of the pose
associated with this particle. The weights of the particles are
initialized equally and updated at each step based on the
likelihood of the detected landmarks, i.e., the landmark
with the highest probability for each particle, as:

w
½m�
t ¼ w

½m�
t�1:p

½m�
n̂t

: (23)

The pose and the map of the particle which has the maxi-
mum weight are selected as the current estimate. Then, a
resampling step is performed using the current weights in
order to refine the particles and drop those that significantly
deviated from the actual path.

Algorithm 1 summarizes the full algorithm.

6 PERFORMANCE EVALUATION

In this section, we present the performance evaluation of
SemanticSLAM. SemanticSLAM can work in two modes of
operation: offline and online. During the online phase, the
user location is reported in each estimate. The offline mode
is useful in applications that can tolerate delays, such as
indoor user analytics. In this case, the entire path is deter-
mined based on the best particle at the end of the user
movement trace instead of taking a local decision at every
instant to select the best particle.

We start by describing our testbeds followed by the land-
mark and user location detection accuracy. We end the sec-
tion by comparing the accuracy of the offline and online
modes of operation as well as quantifying the advantages of
using the proposed SLAM framework in terms of accuracy
and convergence time compared to other systems.

6.1 Experimental Testbed

SemanticSLAM is implemented on different Android
phones. The inertial sensors as well as Wi-Fi information
are sampled and sent to the server for processing.

We evaluated our system in two different testbeds: the
Engineering Building in Duke university and a Shopping
Mall in Alexandria, Egypt. The Engineering Building area
is 3000m2 and the breakup of its landmarks is: 9magnetic, 8
turns, and 15 Wi-Fi OLMs and 3 SLMs, as shown in Fig. 8.

The Shopping Mall area is 6000m2 and the breakup of its
landmarks is: 9 magnetic, 12 turns, and 12 Wi-Fi OLMs as
well as 4 SLMs. Due to space constraints, we only present
the results of the Engineering Building testbed and refer the
reader to Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TMC.2015.2478451, for the detailed results of
the Mall testbed.

Three different users move in the two testbeds to collect
the data. Each user walked around arbitrarily in the build-
ing for 1.5 hours where each of them uses the landmarks
detected by the previous user(s). The default setting of the
system is the online mode.

6.2 Landmark Type Detection Accuracy

In this section, we evaluate SemanticSLAM ability to detect
the landmarks type accurately.
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6.2.1 Seed Landmarks

Table 2 shows the confusion matrix for the detection of dif-
ferent seed landmarks. The matrix shows that some SLMs
are easier to detect than others due to their unique patterns.
Overall, SemanticSLAM can achieve 0.2 percent false posi-
tive and 1.1 percent false negative rates.

6.2.2 Organic Landmarks

It is important that landmark signatures are stable over
time and unique over distance. To evaluate these two
points, we collected sensor readings on multiple days. We
found sound consistency in the signatures. This is expected
due to our design, where we use a low “similarity thresh-
old” to detect an organic landmark as discussed in Section 4.
Therefore, missing a few will affect performance much less
than matching to an incorrect landmark.

6.3 Localization Accuracy

In this section, we evaluate the effect of the number of par-
ticles and landmark density on accuracy as well as the over-
all user localization accuracy.

6.3.1 Effect of the Number of Particles

Fig. 9 shows the effect of the number of particles used
for pose estimation on the overall estimation accuracy.
The figure shows that the performance saturates around
50 particles achieving a median accuracy of about 0.53 m.
Therefore, we use 50 particles for the rest of this section.

6.3.2 Seed Landmarks Effect

Fig. 10 shows the CDF of localization error for the Engineer-
ing building testbed with and without using the seed land-
marks. The case of not using seed landmarks reflects
running SemanticSLAMwith no prior information at all. The
figure shows that, even without the seed landmarks, Seman-
ticSLAM can achieve high accuracy. Removing the seed
landmarks reduces the localization accuracy due to the
reduction of the overall number of landmarks. The Engi-
neering Building has a higher accuracy compared to the
Shopping Mall (Appendix A, available in the online supple-
mental material) due to the higher spatial density of land-
marks in the Engineering Building. We note, however, that
other common seed landmarks (e.g., turns, doors, and win-
dows) can also be used in single floor buildings to compen-
sate for the non-existence of “vertical transport landmarks”.

Fig. 8. Testbeds used in the evaluation. The blue, red, and yellow anchors are the inertial, magnetic, and WiFi landmarks, respectively.

TABLE 2
Confusion Matrix for Classifying Different Seed Landmarks

Elevator Stationary Escalator Walking Stairs FP FN Traces

Elevator 24 0 0 0 0 0% 0% 24
Stationary 0 31 1 0 0 0% 3:1% 32
Escalator 0 0 22 0 0 0:6% 0% 22
Walking 0 0 0 39 0 0% 0% 39
Stairs 0 0 0 1 52 0% 1:8% 53

Overall 0:2% 1:1% 170

Fig. 9. CDF of user loc. accuracy for different number of particles. Fig. 10. CDF of loc. accuracy with and without using seed landmarks.
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6.3.3 User Location Accuracy

To evaluate the user localization accuracy, we calculated the
euclidean distance error at each step during the simulation.
Fig. 11 shows the pattern of the error in the Engineering
Building. From the figure, we notice a saw-tooth pattern for
the error, where the error range decreases with time. The
justification for this pattern is that the error increases
while the user is walking because of the noise in the sensors’
readings. Whenever a landmark is observed, the error is
reduced. As time passes, more landmarks are observed.
Therefore, the map accuracy increases and therefore the
user location error decreases.

6.4 Offline versus Online localization

Fig. 12 shows the CDF of the offline and online Semanti-
cSLAM in the Engineering Building. The figure shows that
the offline SemanticSLAM can significantly reduce the tail of
the distribution compared to the online SemanticSLAM with
a slight enhancement in median distance error.

6.5 Advantage of Using a SLAM Framework

In this section, we quantify the advantage of the proposed
semantic SLAM framework. For that, we compare Semanti-
cSLAM with a previous version (our Unloc system [1]) that
does not use the SLAM framework. Specifically, Unloc does
not take into account the uncertainty of the landmark or the
user’s location which is considered in SemanticSLAM.

6.5.1 Convergence Time

To measure the constructed map accuracy, at every time
instance t we calculate the average location accuracy of
all observed landmarks positions at the estimated map. The
user movement was emulated to extend the simulation time
to reach convergence by repeating the user’s path trace in
the simulation. Fig. 13 shows the results for the Engineering
Building. The figure shows that the SemanticSLAM accuracy
converges quickly within 80 minutes and saturates at about

an average accuracy of 0:83 m. This is better than the Unloc
system [1] that converges after 2 hours to around 1m
average error. Note that even though SemanticSLAM
requires some time to learn the organic landmarks, the
effort to learn these landmarks is transparent to the user
(collected through crowd-sourcing) as compared to tradi-
tional fingerprinting techniques where the user has to per-
form the calibration manually.

6.5.2 Accuracy

In Fig. 14, we compare our system accuracy with and with-
out SLAM in the Engineering Building. The figure shows
that the proposed SLAM framework in this paper can sig-
nificantly enhance accuracy, achieving 62 percent enhance-
ment in median distance error.

6.6 Comparison with Other Systems

In this section,we compare SemanticSLAMwith two other sys-
tems: a Wi-Fi fingerprinting system (similar to the Horus sys-
tem [9]) and a magnetic fingerprinting system (similar to the
MaLoc system [42]). The magnetic based system uses a parti-
cle filter to further improve the accuracy, which is not used in
theWi-Fi-based system. Fig. 15 shows that SemanticSLAM has

Fig. 11. User localization error over time.

Fig. 12. CDF of loc. accuracy for online and offline SemanticSLAM.

Fig. 13. Organic landmarks loc. accuracy improvement with time.

Fig. 14. Advantage of using the proposed SLAM framework on loc.
accuracy.

Fig. 15. Comparison between SemanticSLAM and other fingerprinting
systems.
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better median accuracy as it uses more landmarks, both seed
and organic. Fingerprinting-based systems, however, has a
betterworst-case error due to the initial manual calibration.

7 RELATED WORK

Our work is related to prior work in both indoor localization
systems and SLAM systems.

7.1 Indoor Localization

Many systems have been proposed over the years to
address the indoor localization problem [3], [5], [8], [9], [18],
[43], [44], [45], [46]. From these RF-based systems, especially
those based on Wi-Fi, have gained attention due to their
ubiquitous deployment. Typically, these techniques build
an RF fingerprint [8], [9] of the area of interest to compen-
sate for the noisy wireless environment. However, building
this fingerprinting is a tedious and time consuming process
that needs to be repeated from time to time due to environ-
ment changes.

More recently, a number of systems have been proposed
to reduce the calibration and re-calibration overhead of Wi-
Fi-based localization systems, e.g., [16], [18], [19]. These sys-
tems either depend on installing special hardware to moni-
tor changes in the signal strength [16], crowd-sourcing [47]
with active user participation, and/or propagation model-
ling tools [15], [48], [49], [50].

Dead-reckoning using smart phones inertial sensors has
been also used in indoor localization [51], [52], [53], [54].
However, dead-reckoning error quickly accumulates lead-
ing to complete deviation from the actual path. Therefore,
GPS has been used in outdoor localization systems to recali-
brate the dead-reckoned location [20], [21]. Since GPS is
unreliable indoors, other techniques were used to improve
the dead-reckoning errors [52], [54] such as constraining the
resulting traces with the indoor floorplan layout.

SemanticSLAM, on the other hand, is unique in leverag-
ing environment hints (i.e., landmarks) for resetting the
error in dead-reckoning. These multi-sensors landmarks are
learned in an organic way, with no calibration or active
involvement from the user. Moreover, by combining the
SLAM framework with landmarks as observations, Semanti-
cSLAM can achieve high accuracy with guaranteed system
convergence. In addition, since data is collected all the time
through the system users, any changes in the organic land-
marks locations or signatures can be captured in realtime,
keeping the system up-to-date.

7.2 SLAM

The SLAM algorithm was originally introduced in robotics
for navigation of autonomous agents in unknown environ-
ments. It has been applied recently in human tracking sys-
tems. Wi-Fi SLAM [55] builds a landmark map of the Wi-Fi
signal strength based on a Gaussian Process Latent Variable
Model (GP-LVM). GP-LVMs provide a framework for
jointly modeling concurrent constraints on Wi-Fi signal
strength measurements (observation model) and a person’s
motion from the phone’s inertial sensors (motion model).

Similarly, ActionSLAM [56] combines dead-reckoning
based on special foot-mounted inertial sensors with obser-
vations of location-related actions.

SemanticSLAM generalizes the SLAM concept to work
with landmarks that can be sensed by any of the phone sen-
sors. In addition, it introduces the concepts of seed and
organic landmarks. Moreover, it is based on leveraging the
standard noisy cell phone sensors, without using any exter-
nal hardware.

8 CONCLUSION

In this paper, we proposed SemanticSLAM as a calibration-
free indoor localization system that provides a novel SLAM
algorithmic framework. We provided the architecture and
details of SemanticSLAM and how it combines dead-reckon-
ing with semantic information discovered from multiple
cell phone sensors about nearby landmarks to perform
accurate localization and mapping simultaneously.

The system was evaluated on two testbeds: a university
building and a shopping mall. Experimental results showed
that SemanticSLAM can discover different multi-model
landmarks with a low false positive and negative rate of
less than 1 percent. In addition, it can achieve 0:53 meters
median localization error in both testbeds with fast conver-
gence time. This is even enhanced in the offline mode of
operation. Compared to the state-of-the-art indoor localiza-
tion systems, SemanticSLAM provides 62 percent enhance-
ment in accuracy and 33 percent in convergence time,
highlighting its promise for next generation indoor loca-
tion-based services.

Currently, we are expanding the system in multiple
directions including collaborative localization of multiple
persons, exploiting other sensors (such as sound and light
sensors), among others.
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