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HeartSense: Ubiquitous Accurate Multi-Modal Fusion-based Heart

Rate Estimation Using Smartphones

REHAM MOHAMED, Alexandria University
MOUSTAFA YOUSSEF, Egypt-Japan Univ. of Science and Technology (E-JUST)

Heart rate is one of the most important vital signals for personal health tracking. A number of smartphone-based heart rate
estimation systems have been proposed over the years. However, they either depend on special hardware sensors or suffer
from the high noise due to the weakness of the heart signals, affecting their accuracy in many practical scenarios.

Inspired by medical studies about the heart motion mechanics, we propose the HeartSense heart rate estimation system.

Specifically, we show that the gyroscope sensor is the most sensitive sensor for measuring the heart rate. To further counter
noise and handle different practical scenarios, we introduce a novel quality metric that allows us to fuse the different gyroscope
axes in a probabilistic framework to achieve a robust and accurate estimate.

We have implemented and evaluated our system on different Android phones. Results using 836 experiments on different
subjects in practical scenarios with a side-by-side comparison with other systems show that HeartSense can achieve 1.03 bpm
median absolute error for heart rate estimation. This is better than the state-of-the-art by more than 147% in median error,
highlighting HeartSense promise as a ubiquitous system for medical and personal well-being applications.

CCS Concepts: •Human-centered computing →Ubiquitous and mobile computing;

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Heart rate detection, smartphone sensors, gyroscope, heart mechanics

ACM Reference format:

Reham Mohamed and Moustafa Youssef. 2017. HeartSense: Ubiquitous Accurate Multi-Modal Fusion-based Heart Rate
Estimation Using Smartphones. PACM Interact. Mob. Wearable Ubiquitous Technol. 1, , Article 97 (  2017), 18 
pages.

DOI: 10.1145/3132028

1 INTRODUCTION

Recently, providing ubiquitous healthcare systems has gained momentum due to their promise in enhancing

the healthcare system, personal well-being, and reducing the load on the medical infrastructure. Heart rate,

i.e. how many pulses are made by the heart in one minute, is one of the main vital signals that can indicate a

number of health issues [12] ranging from hypertension [13] to other diseases affecting the heart physiology

such as cardiovascular diseases, heart valve disease, heart failure, tumors, or infections [1, 17, 18, 21, 27, 38, 39].

In addition, it can be used during exercising to optimize fat-burning zones and improve health and fitness [7, 25].

Typically, heart rate is measured using medical-grade devices at hospitals based on using ECG instruments

or pulse oximeters. To provide more ubiquitous coverage, heart rate monitoring based on special sensors in

wearables or smart phones has been introduced including chest-worn trackers [34], wristbands [24], or special

hardware sensors in high-end smart phones, e.g. as in Samsung Galaxy S7. Recently, researchers have started

leveraging standard cell phone sensors to measure the heart rate. One approach is to use the phone camera
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to detect the changes in the fingertip color due to the different amount of oxygen in blood with heart pulses

[16, 29]. Nevertheless, all these techniques do not provide accuracy in typical usage scenarios, consume high

energy, and/or require special devices. A number of techniques have been proposed to measure the heart rate as

a secondary signal with the breathing rate. The idea is that the periodic motion of the chest during breathing

and heart pumping can be measured by the phone sensors, i.e. RF sensors [2, 3, 23, 28] or more recently inertial

sensors [4] for higher accuracy and robustness. Different bandpass filters are used to separate the spectrum

of the breathing (6-30 breath per minute (bpm)) and heart rates (54-120 beat per minute (bpm)) of the typical

human. However, since the breathing motion is the dominant motion (Figure 1) that affects the human chest (due

to the lungs size and their closer position to chest), heart rate estimation using mobile devices has been sensitive

to noises from the surrounding or minute body motion, leading to lower accuracy in estimation.

In this paper, we present the HeartSense system for accurate and robust heart rate estimation using the inertial

sensors of standard phone sensors. Based on medical studies of the heart mechanics that show that the heart

helical shape moves spirally [6], we show that two of the gyroscope sensor axes, based on the user’s pose and

phone orientation; are the most sensitive to the heart motion. To work with different human poses and further

tolerate noise, HeartSense fuses the different gyroscope axes using novel quality metrics that help it determines

the best axes. HeartSense also proposes a Robust Lazy Heart Rate Estimator that filters the instantaneous estimates

to give a robust long term heart rate estimate. By leveraging standard smart phone sensors, with the possibility of

strapping the phone over the chest, HeartSense is suitable for several daily usage scenarios such as in emergency

situations, for monitoring a patient in the convenience of his own bed, or for an athlete during exercising.

Previous work using inertial sensors to monitor the heart rate, uses the accelerometer or fuses the accelerometer

and gyroscope sensors to provide an estimate for the heart rate regardless of the mechanics of the heart motion.

While these systems provide the state-of-the-art accuracy [19], we show in this paper that using gyroscope

axes that are more affected by heart motion gives a higher accuracy. We have implemented HeartSense and

deployed it on a variety of Android phones. Our 836 experiments on different subjects under different realistic

conditions show that HeartSense can achieve a median heart rate estimation error of 1.03 bpm. This is better than

the state-of-the-art systems by 136%.

In summary, our contributions in this paper are four-fold:

• We present the architecture and details of a robust and accurate heart rate detection system using the

inertial sensors of standard smartphones that builds on well-established studies on the mechanics of the

heart motion.

• We provide novel quality metrics that capture the accuracy of each gyroscope axis under different

scenarios.

• We propose a Kalman filter to fuse the different gyroscope axes.

• Finally, we present a robust estimator that combines the instantaneous heart rate estimates into a robust

long term measurement.

The rest of the paper is organised as follows: We discuss a background on the mechanics of the heart motion 
and analysis of how it affects to the inertial sensors in Section 2. In Section 3, we show the details of HeartSense 
system. Section 4 shows the experimental evaluation. Finally, we discuss related work and conclude the paper in 
sections 5 and 6 respectively.

2 BACKGROUND AND SENSOR ANALYSIS STUDY
In this section, we start by a brief background about the mechanics of heart motion. We then present a study on 
the ability of the different inertial sensors to capture this motion with high sensitivity.
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Fig. 1. Gyroscope signal with smartphone held on chest. Compared to the heart, the breathing signal is the dominant signal

due to the size of the lungs and their closer position relative to the chest.

2.1 Heart Helical Motion

The heart is a muscular organ that pumps blood throughout the body, providing the body parts with the necessary

oxygen and nutrients. It is located in the middle of the chest, tilted to the left. Cardiac anatomy shows that the

heart has a helical structure, formed of a muscular band folded spirally [6, 26, 33, 37, 40]. Figure 2 shows the

folding structure of the muscular heart band. The band is formed of two loops: a basal loop formed of a right and

left segments, and an apical loop, folded to give the helical heart structure.

This helical shape causes the twisting and untwisting of the heart muscle to allow for both the suction and

ejection of blood in and out of the cardiac filling [6, 26, 33, 37, 40]. This results in a wave of contractions that

follows the path of the heart band as shown in Figure 3. The active contractions move along the muscular

band causing narrowing of the heart underlying muscle. The sequence starts with the right segment and then

goes to the left segment to cause a clockwise twisting of the heart muscle. This twisting effect further causes a

counter-clockwise rotation during relaxation of the heart muscle1.

2.2 Ability of Phone Inertial Sensors to Capture the Heart Motion

Given the heart helical motion that affects the chest accordingly, it seems natural that the gyroscope sensor

should be the most sensitive sensor to detect this motion when the user places a smartphone on her chest. We

performed a study to validate this intuition for different human poses (Figure 16).

Figure 4 shows an example of the captured inertial sensors signals (3-axes of the gyroscope and 3-axes of the

accelerometer) in five seconds when the phone is placed horizontally on the chest of a sitting user. The actual

heart rate was 90 bpm. This maps to 7.5 heart pulses during the 5 seconds experiment. The figure shows that

the most sensitive/accurate sensors are the gyroscope X and Z axes when the phone is held horizontally. This fits

the heart motion mechanics. We found that when the phone is held in a vertical position, the most affected axes

1A video describing the helical heart motion can be found in [8].
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(a) The folded heart. (b) Step 1 of un-

folding the heart.

(c) Step 2 of unfolding the

heart.

(d) The unfolded heart muscle band.

Fig. 2. The heart helical structure causes the twisting and untwisting of the heart muscle to allow for both the ejection of

blood and suction for cardiac filling. Analogy is shown with a rope (Figure independently redrawn. Originally from [6]).

Fig. 3. Heart motion steps. The brighter parts of the heart are the currently contracted parts. The contractions move as a 
wave along the band, twisting the heart clockwise (Figure modified from [8]). This angular motion can be captured accurately 
by the phone gyroscope sensor.

are the X and Y axes, which are again aligned with the heart motion. This is maintained for different poses and 
phone orientations (as shown in Figure 16).

It is important to note here that the third gyroscope axis as well as the three accelerometer axes are very 
noisy. This leads to a low accuracy in estimating the heart rate if these sensors are blindly used (as we quantify 
in Section 4). HeartSense builds on these findings to obtain an accurate heart rate estimate. In addition, it provides 
a novel quality measure for the different gyroscope axes to determine the best two axes, independent from the 
user pose or phone orientation.

3 THE HEARTSENSE SYSTEM
In this section, we provide the details of HeartSense. We start by an overview of the system operation then provide 
the details of the different system components.

3.1 Overview

Figure 5 shows the HeartSense system architecture. HeartSense starts by the user holding her smartphone over 
the chest. As shown in Section 2, the periodic heart beats can be detected using the 3-axes gyroscope sensor:
{Gyrox , Gyroy , Gyroz }. These three signals are fed into the Preprocessing Module which reduces the noise in the
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(c) Gyroscope Y-axis.
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(d) Accelerometer X-axis.
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(f) Accelerometer Y-axis.

Fig. 4. The signal of the different inertial sensors for a phone placed horizontally over the chest of a sitting user. The ground

truth heart rate is 90 bpm (7.5 pulses in the five seconds window). The most sensistive/accurate sensors are the gyroscope

X and Z axes, fitting the heart helical motion mechanics. Other sensors and axes are significantly more noisy, leading to

inaccurate estimates.

Fig. 5. HeartSense System Architecture.

input data. The filtered signals are then passed to the Heart Rate Extraction Module that estimates the heart rate

from each axis signal stream as well as calculates a quality metric that reflects the confidence in each heart rate

estimate of the three signals. These different estimates are then fused using a Kalman filter, taking into account

the estimated quality metric for each signal. The output of the Heart Rate Extraction Module can be used for

real-time monitoring of the heart rate. Finally, these instantaneous estimates are further post-processed by the

Robust Heart Rate Estimation Module to remove outliers, providing a robust estimate that can be used, e.g. to log a

single heart rate reading in the patient’s health record.
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(a) Before preprocessing.
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(b) After preprocessing.

Fig. 6. Effect of the local mean removal on the noisy input signal. The filter reduces noise while maintaining the heart rate

pulses.

3.2 Preprocessing Module

The first task of this module is to segment the continuous input signals from the three gyroscope axes into fixed

sliding windows of sizew for processing2.

Using sliding windows allows the system to work in realtime. After segmentation, first we remove the DC

component from the signal then smooth the input signal using a local mean removal technique (Figure 6).

Specifically, for a given gyroscope sensor axis, the smoothed signal sj for sample j is given by:

sj =
1

ws

j+ws2∑

i=j−ws2
(si − μ ) (1)

Where ws is the filter window size (ws < w)3, and μ is the mean of the sensor data over the entire window for 
DC removal.

3.3 Instantaneous Heart Rate Estimator

This is the main module of HeartSense. It processes the filtered signals to provide a realtime instantaneous 
estimate of the heart rate. It starts with estimating the heart rate from each signal individually, then fuses these 
estimates using a Kalman filter. For this, it calculates a novel quality metric for each sensor estimate, which 
reflects the accuracy of this sensor.
We first describe the details for a single sensor estimation. Then we show the quality metrics estimation and 

the sensors fusion to provide an instantaneous heart rate measurement.

3.3.1 Single-Sensor Heart Rate Estimation. The signals collected using the phone inertial sensors over the chest 
are usually dominated by the breathing motion of humans, which is remarkably stronger than the motion 
caused by the heart beats due to the lungs size and its relatively closer position to the chest. To counter/handle 
that, HeartSense leverages two observations: First, the lungs motion is linear while the heart motion is helical (as 
shown in Section 2). Second: that heart and breathing rates have different ranges, where the normal heart rate

2We study the effect of the different parameters on system accuracy in Section 4.
3We experimented with different values for ws and found that the system performance is not sensitive to ws values < w /40.
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Fig. 7. The FFT of the sensor signal showing the different bands of breathing and heart rates.

ranges between 54 to 120 bpm, while the breathing rate ranges between 6 to 30 bpm [22] (Figure 7). Therefore,

HeartSense first computes the Fast Fourier Transform (FFT) of the signal to get its spectrum. Then, it applies a

bandpass filter with cutoff frequencies equal 0.9 (54 bpm) and 2 (120 bpm) to get the heart beats range. HeartSense

then selects the frequency with maximum magnitude to estimate the current heart rate.

Formally, for a given gyroscope axis, the heart rate at time t , hrt , is estimated as:

hrt = 60 × argmax
0.9≤f ≤2

FFTt ( f ) (2)

FFTt ( f ) = abs(
t∑

i=t−w
si × e−2π f j/w ) (3)

Where w is the segment size from the Preprocessing Module and si is the i
th sample of the gyroscope s axis

stream. We discuss the different values of FFT window size in Section 4.1.1.

3.3.2 Quality Metric. In typical system usage scenarios, different factors can change including the pose of the

user and the orientation of the phone. This leads to changing the sensors that are the most sensitive (as shown

in Section 2 and Figure 4). To address these variations and provide an accurate estimate, HeartSense introduces

a measurement of the sensor quality that can help determine the relative confidence in the readings of three

gyroscope axes.

In particular, we propose two measures of quality and compare them in Section 4. The first metric measures

the purity of the signal. The intuition is that a perfect signal should be a sinusoidal wave with one frequency

component in its spectrum that maps to the user’s heart rate. To capture this, we use the kurtosis to compare

the spectrum of the signal with the spectrum of a perfect sine wave. The kurtosis reflects the peakedness and

tailedness of the signal: a high kurtosis distribution has a sharp peak and fatter tails, while a low kurtosis

distribution has a more rounded peak and thinner tails [10]. The kurtosis quality score for the gyroscope axis s at
time t , QKurt

s
t , is defined as:

QKurt
s
t =

kurt(FFTst )

kurt(Phrs
t
)

(4)
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Fig. 8. The FFT of a noisy and a high-quality signals with their kurtosis quality scores.
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Fig. 9. The heart rate estimates of two gyroscope axes. The axis with smaller variance is more accurate.

Where Phrs
t
is the perfect sine wave with frequency corresponding to the estimated heart rate hrst . Figure 8

shows an example of two signals spectrum with a low and high QKurt scores.

The second metric measures the degree of consistency of the sensor over time. To capture this, we measure

the standard deviation of the estimate of a specific axis over time. The idea is that, if the estimates are not

consistent; i.e. the standard deviation is high; this implies that the input signal is noisy. More formally, the

standard deviation quality score QStdev
s
t is measured as:

QStdev
s
t = Stdev(∀i ∈[1:t ]hrsi ) (5)

Figure 9 shows the heart rate estimates using two different sensor axes. The figure shows that the axis with 
the smaller variance gives more accurate readings.

3.3.3 Multi-Sensor Instantaneous Estimate. The final module of the Instantaneous Heart Rate Estimator fuses 
the estimates calculated from the individual gyroscope axes using a Kalman filter. The input to the Kalman filter is
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the heart rate estimates from the three axes with their corresponding quality measures. The quality measures are

used to model the variance of the measurement noise of the Kalman filter R. Note that in case of using kurtosis,

we reverse the quality score to map to the noise variance, i.e. R = 1 −QKurt.

The Kalman filter consists of two steps: The prediction and update steps. The prediction step is calculated as:

h̄r t = hrt−1 (6)

P̄t = Pt−1 +Q (7)

Where Pt is the error variance of the estimate at time t and Q is a constant process noise variance. We start

with constant values of hrt and Pt . These values are updated over time using the Kalman filter equations. The

update step is modelled as:

Kt =
P̄t

P̄t + Rt
(8)

hrt = h̄r t + Kt (hr
s
t − h̄r t ) (9)

Pt = (1 − Kt )P̄t (10)

Where Kt is the Kalman Gain.

3.4 Robust Heart Rate Estimator

HeartSense also introduces a Robust Heart Rate Estimator to filter the instantaneous heart rate estimates to

provide one robust estimate after removing the outliers. This estimate can be used, e.g. to log a reading of the

heart rate in the user’s medical file. This estimator uses an α-trimmed mean filter which orders the current

samples, removes the farthest α samples from both sides of the median, then calculates the mean of the remaining

samples. The α-trimmed filter has an advantage over the normal mean filter that it handles impulse noise; it also

has an advantage over the median filters since it handles the Gaussian noise [5]. Specifically, the α-trimmed filter

works as follows:

hrR =
1

wα − �2αwα �
wα−�αwα �∑

i= �αwα �+1
hri (11)

Where hrR is the Robust heart rate estimate,wα is the window size used to compute the robust estimate4, and

hri is the i
th heart rate estimate after ordering. α is a parameter that determines the type of the filter. At α = 0,

the filter mimics the standard average filter, while at α = 0.5, the filter is equivalent to the median filter.

3.5 Discussion

HeartSense uses commodity of-the-shelf smartphones to produce accurate and reliable results. Its advantages

lie in its ability to be used by any user anywhere. The user does not have to go to a hospital or visit a doctor’s

clinic. Also, there is no need to attach a special sensor or wear specific clothing, which is expensive or may not be

available to typical users especially in developing countries. Moreover, there are no assumptions about the user’s

weight or chest size. HeartSense could be used in different scenarios: For example, a healthy user may want to

regularly check her vital signs to ensure good health conditions. An athlete would also need to monitor her heart

rate changes during exercising. On the other hand, a patient might want to follow the effect of a medication and

avoid adverse effects. HeartSense could also be used in emergency cases such as falling, sudden heart attacks,

4We experimented with different window sizes and found that wα = 30 balances both accuracy and latency of the robust estimate.
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Table 1. HeartSense system parameters.

Parameter Range Default value

FFT window size (w) 10 - 60 seconds 50 seconds (5000 samples)

Preprocessing window size (ws ) 0.04 - 0.5 seconds 0.04 seconds (4 samples)

Sensors in use 1, 2, 3 gyroscope axes 3 axes

Phone orientation Vertical, Horizontal Horizontal

Human’s pose Sitting or Lying Sitting

Quality metric QKurt, QStdev QStdev

α 0 - 0.5 0.1

Phone type Samsung Note II, Samsung S5, Sony Z2 Samsung Note II

among others. Different usage scenarios have different accuracy requirements. For example, for an exercising 
application a relatively low accuracy may be tolerated in exchange for lower latency. On the other hand, a 
patient-monitoring application to confirm a certain heart condition would require high accuracy. HeartSense 
could also promote remote healthcare applications which is of paramount importance in developing countries.

HeartSense could also be used in different postures: a normal user would hold the mobile in hand on the chest 
while sitting to get one reading. On the contrary, a sick person might need to put the phone on her chest while 
lying in bed. The main usage of HeartSense is to obtain one accurate reading of heart rate while holding the 
device over the chest by hand. However, the phone could also be tied to the chest using a cheap strap (with 
average cost of $0.1) to allow for continuous monitoring and mobility, e.g. during exercising.

4 SYSTEM EVALUATION
We have implemented HeartSense and tested it on different Android devices including Samsung Note II, Samsung 
S5, and Sony Z2. We tested the system using 836 experiments carried on 11 persons (6 females, 5 males), with ages 
between 10 to 60. The subjects carried out the experiments while wearing their daily normal clothing, including 
heavy suits, jackets, etc. Each user carried the phone by hand over her chest in one of two phone orientations. 
For each orientation, experiments were done with users sitting and lying down. Data was collected during the 
experiments with a 100 Hz sampling rate. To collect the ground truth, we used an Omron HEM-432C blood 
pressure and pulse rate monitor.

Table 1 summarizes the system parameters and their default values.

4.1 Effect of System Parameters

In this section, we show the effect of the different system parameters on performance.

4.1.1 Effect of the FFT window size. Figure 10 shows the effect of changing the FFT window size (w), i.e. the 
segment length, on the median absolute heart rate estimation error. The figure shows that the median is not 
sensitive to the FFT window size. This is due to the low frequency of the heart rate signal (less than 2 Hz for the 
typical human range of 54-120 bpm), making a window size of 10 samples enough to reconstruct the signal.
For the rest of the paper, we set the default value of the FFT window size to 50 seconds. We note that the 50 

seconds delay occurs in the initial reading only. After that, our heart rate estimator works using a sliding window 
with about 3 seconds offset. A 10 seconds window could be used to provide a reasonable accuracy with a lower 
initial latency if needed.

4.1.2 Effect of the Quality Metric. As discussed in Section 3.3.2, we propose two different quality metrics: 
QKurt, which measures the purity of the FFT signal and QStdev which measures the sensor’s consistency. Figure 11
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shows the quantile plot for the two quality measures. The figure shows that the two techniques almost have the

same performance error, with a slight advantage to the QStdev technique for the extreme values.

4.1.3 Effect of Fusion of the Different Gyroscope Axes. Figure 12 shows the error of the Instantaneous Heart

Rate Estimation Module when fusing different combinations of the gyroscope axes using the proposed quality

measures in the Kalman filter. Note that when using each axis separately, the axes are ordered by their quality

scores. The figure shows that fusing more axes leads to better accuracy. In addition, the performance of the

individual axes match the order provided by the quality metric. This highlights that the quality metric effectively

captures the signal quality of the different axes.

4.1.4 Effect of α . Figure 13 shows the effect of the α value used in the α-trimmed filter by the Robust Estimator.

At α = 0, the filter performs as a mean filter which is more sensitive to outliers. At α = 0.5, the filter approaches
the median filter, which is not robust to the Gaussian noise. The figure shows that an optimal value can be

reached at α = 0.1.
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Robust Estimators of HeartSense.
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Fig. 15. Performance of HeartSense on different phones.

The black bars show the median absolute error, while

the yellow bars show the zero-rate level of the gyroscope

sensor of the corresponding phone.

4.1.5 Effect of the Robust Estimator. Figure 14 compares the performance of the Robust Estimator to the

Instantaneous Estimator. The figure shows that the Robust Estimator can enhance all the percentiles of the

distribution over the Instantaneous Estimator, leading to a median error of less than 1.03 bpm.

4.1.6 Performance on Different Phones. In Figure 15, we show the performance of HeartSense on three different

phones: Samsung Note II, Samsung S5, and Sony Z2. For each phone, we show the median error of heart rate

estimation, as well as the zero-rate level for each phone’s gyroscope chip obtained from its datasheet. The

zero-rate level describes the deviation of an actual output signal from the ideal output signal if no angular change

is applied. The lower the zero-rate level value, the better. The figure shows that the accuracy on a specific phone

is correlated with its chip accuracy. Nevertheless, HeartSense error is at most 1.7 bpm in the worst case.

4.2 Overall System Performance

In this subsection, we quantify HeartSense overall performance. We start by showing the system performance in

different scenarios. Then, we show how HeartSense handles different heart rates with high accuracy. Finally, we

compare HeartSense with other approaches used in literature.

4.2.1 Performance under Different Scenarios. We evaluated HeartSense under different scenarios covering

different human poses (sitting or lying) and different mobile orientations (vertical, horizontal). Figure 16 shows

the four different combinations used in testing. Figure 17 shows the effect on the median absolute error. The

figure shows the sitting pose has smaller quartile errors since the heart motion has a stronger effect on chest

while sitting than sleeping. Nevertheless, HeartSense performance is robust to different human poses.

The figure also shows that HeartSense performance is robust to different orientations.

4.2.2 HeartSense Performance at Different Heart Rates. In this section, we show the different heart rates 
spanned by our experiments and how HeartSense performs with different users having different heart rates with 
a range between 64 to 95, including measuring at rest and after exercising. Figure 18 compares between the 
estimated heart rate values and the actual heart rate values. The figure shows that HeartSense can detect the 
different heart rates effectively with a median error of 1.03 bpm. As the heart rate increases, the performance 
of HeartSense becomes better, where the percentage of the error at smaller range (65-75 bpm) is 3.4% while for



HeartSense: Ubiquitous Accurate Multi-Modal Fusion-based Heart Rate Estimation Using Smartphones  •  97:13

Fig. 16. Different combinations of human poses and mo-

bile orientations used in evaluating HeartSense.
Fig. 17. Effect of the phone orientation and human pose.
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Fig. 18. Performance of HeartSense at different heart rates. A perfect estimate should lie on the line with slope= 1.

higher range (85-95 bpm) is 0.76%. This is due to the higher power of the heart at higher heart rates, leading to a

cleaner signal on the gyroscope axes.

4.2.3 Comparison with Other Systems. Finally, we compare the performance of HeartSense to those that use

the standard phone sensors. Since the inertial sensors (e.g. [14]) in general are more accurate than RF-based

systems (e.g. [2, 23]) due to their closer distance to the heart, we use the state-of-the-art inertial-based system

[14] for comparison. Furthermore, we also compare HeartSense performance to two of the popular commercial

Android applications: One that uses the special heart rate sensor on high-end smart phones [32] and another

that uses the built-in camera for measuring the heart rate by tracking the color change of the fingertip [15]. The

applications have more than 25 million downloads and their average rating is more than 4.3.

Figure 19(a) shows the CDF of error and Table 2 summarizes the results. The results show that HeartSense

significantly outperforms the accelerometer-based systems by more than 385% in median error. More interestingly,

fusing the accelerometer with the gyroscope axes using the weighting metrics introduced in Section 3 leads to

worse performance compared to using the gyroscope alone (as in HeartSense) due to the high noise of the
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Table 2. Summary of the comparison between HeartSense and the state-of-the-art system in [14] and two highly popular

applications from the application store that use the camera and the special heart sensor on high-end devices. The numbers in

the table represent the absolute error. Numbers between parenthesis represent the percentage of degradation compared

to HeartSense.

HeartSense HeartSense

(Gyro.+Accel.)

Accelerometer-based

[14]

Commercial App

(Special HR sensor)

[32]

Commercial App

(Camera) [15]

25th perc. 0.38 0.79 (107.9%) 2 (426.3%) 1 (255.3%) 0.83 (117.1%)

50th perc. 1.03 1.92 (86.4%) 5 (385.4%) 2.55 (147.6%) 3.85 (273.8%)

75th perc. 3.59 3.77 (5.01%) 9 (150.7%) 4.64 (29.2%) 5.54 (54.3%)

RMSE 4.98 5.18 8.28 4.07 5.2

Power (mW) 148.05 170.92 40.46 596.6 1716.8

accelerometer sensor. This confirms our findings throughout the paper and highlights the ability of HeartSense 
to provide ubiquitous, accurate, and robust heart rate estimation using standard cell phones. The figure also shows 
that HeartSense outperforms the commercial applications that use the built-in camera or the special hardware 
sensor by more than 147%. This is due to the high sensitivity of both techniques to the placement of the finger 
over the camera/sensor. It is important also to note that using the camera and turning on the flash (required 
for both the special heart rate sensor and camera-based techniques) can drain the scarce phone battery quickly, 
compared to using the energy-efficient inertial sensors. Figure 19(b) shows the power consumption of HeartSense 
compared to the other systems, we calculated the CPU power consumption using the PowerTutor profiler [41] 
and the sensors datasheets.

5 RELATED WORK

In this section, we discuss the work related to HeartSense. We start with showing the systems that use the 
smartphones to measure different vital signs other than the heart rate. Then, we discuss related work that 
measure the heart rate in particular.
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5.1 Measuring Vital Signs using Smartphones

Over the years, smartphones have been used for different healthcare purposes including breathing rate monitoring

[2, 23], blood pressure [30], colorimetric diagnostic assays [35], newborn jaundice [9], and lung functions [20].

UbiBreathe [2] uses the RSS of standard WiFi equipment to estimate the breathing rate and detect apnea. In [23],

authors extend the idea to use the more detailed CSI information. Zephyr [4] uses different inertial sensors to

detect the motion of the chest caused by breathing, leading to more accurate and robust estimates.

SpiroSmart [20] uses the phone microphone to measure the lung function. The idea is for user to breathe in

their full lung volume and forcefully exhale back at the phone. The sound is processed to detect the flow rate.

To measure the blood pressure, [30] combines an external microphone or a second phone with the built-in

camera by computing the pulse pressure and the stroke volume from the sensors data. The phone camera has also

been used for colorimetric diagnostic assays [35] and newborn jaundice [9], which use calibration techniques to

compensate for measurement errors due to the variability in ambient light.

HeartSense complements these systems by providing accurate and robust heart rate detection using the

gyroscope sensor in standard smartphones based on studying the heart motion mechanics.

5.2 Heart Rate Detection

Heart rate is typically measured in medical facilitates using special devices such as the electrocardiogram (ECG)

instruments or pulse oximeters. The former depends on measuring the electrical impulses of the heart while

the latter depends on analyzing the difference in light absorbtion of red and infrared light. This requires special

devices to be inconveniently attached to the person’s body. In addition, the cost may be prohibitive in many

situations.

To provide ubiquitous heart rate estimation, other systems use wearable accelerometer sensors [11, 19, 34, 36]

attached to the body to monitor the heart rate. However, this requires special hardware and, as shown in the

experiment section, the accelerometer sensor is less sensitive to the heart motion mechanics as compared to

the gyroscope sensor. BioPhone [14] also uses smartphone accelerometer to measure the heart rate in different

static postures. However, it aggregates the three sensors axes without rating, unlike HeartSense, which fuses

the axes of the gyroscope using a Kalman filter by accurately measuring the variance of the measurement noise

using our quality metrics, therefore, it provides higher accuracy.

To provide a non-invasive solution, researchers have proposed using RF signals for estimating the heart rate

[3, 28, 31]. The idea is that an RF signal going through the chest will be affected by the periodic motion of the

body parts (mainly the lungs and heart as a secondary signal). This motion can be captured by RF sensors. For

example, in [28], the authors use a dense array of wireless sensor nodes to estimate the breathing and heart

rate. The system in [3] uses special directed antennae to focus the signal on the human body and detect the

heart rate based on the periodic change in the phase of the received signal. Similarly, DopplerSleep [31] which

analyzes the sleeping behaviour by measuring different vital signs, including the heart rate, using a doppler radar.

Although these techniques provide reasonable accuracy, usually in controlled environments, they still require

special hardware, which raises cost and scalability issues.

More recently, a number of techniques that leverage the standard phone sensors for estimating the heart rate

have been proposed [2, 4, 16, 23, 29]. In [16, 29] use the phone camera and flash to estimate the breathing rate

by analyzing the blood color change with the heart pulses, similar to the oximeter principle. Similarly, some

cellular manufacturers, e.g. in high-end Samsung phones, include a special sensor for measuring the heart rate

using the same idea. However, using the phone camera leads to limited unreliable accuracy and a special sensor

is not a scalable solution. Other techniques use the standard WiFi RSS or CSI information, e.g. [2, 23], to estimate

the heart rate; similar to RF techniques that use special sensors. However, using standard WiFi signals leads to

limited accuracy in many practical scenarios and requires the phone to be close to the AP. Zypher [4] leverages
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the inertial phone sensors to estimate the breathing rate only by placing the phone on the chest and suggest

estimating the heart rate by using a bandpass filter. It can provide good accuracy in breathing rate estimation as

compared to RF-based techniques. However, as we quantified in the evaluation section, using the accelerometer

sensor for heart rate estimation is not reliable.

HeartSense, on the other hand, builds on well-established studies in the medical domain to remove low-quality

sensors, leading to better accuracy and robustness using standard cell phones. In addition, it combines different

modules to handle the noise and variations of the typical usage scenarios.

6 CONCLUSION

We presented the design and implementation of HeartSense: an accurate and robust system for ubiquitous heart

rate detection. HeartSense uses the commodity off-the-shelf smart phones to measure human’s heart rate using

the gyroscope sensors. Inspired by medical studies of the mechanics of the heart motion, we showed that the

gyroscope sensor is the most sensitive to capture the spiral heart movement. We further presented two quality

metrics that can weigh the quality of the different gyroscope axes independent of the human pose or phone

orientation. A Kalman filter is proposed to the estimates from the different axes to obtain an accurate real-time

heart rate estimate. This instantaneous estimate is further post-processed to remove outliers and provide robust

heart rate measurements.

Evaluation of HeartSense using 836 experiments on different subjects shows that it can achieve a median

absolute error of 1.03 bpm under different practical scenarios. This is better than the state-of-the-art commercial

smartphone applications by more than 136%.

Currently, we are extending HeartSense in different directions including detecting abnormalities in the heart

signal, estimating other vital signals, among others.
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